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Motivation

�e fundamental problem to solve in video matting is to
produce spatio-temporally coherent clusters of moving fore-
ground pixels. �ere are several di�culties:
▸ Intensive Preprocessing

Figure 1 : Traditional methods require every input frame with
trimap mark-ups, which could be labor intensive.

▸ Temporal Incoherence: Per-frame based algorithms
produce jittering artifacts, relying on postprocessing or
user interaction to mitigate the undesired e�ects.

OurWork

▸ Two-Frame Laplacian & Nonlocal Neighbor Selection

Figure 2 : Le� shows K nearest neighbors (red) of the selected
point (green); right shows a typical sparse nonlocal two-frame
a�nity matrix A in KNN video matting.

▸Motion-Aware Feature Vector
�e feature vector X(i) at a pixel i in frame t is:
Xt(i) = (λs(x, y)
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�e objective function de�ned on alpha value x :

g(x) = xTLx + λ
⎡⎢⎢⎢⎢⎣
∑
i∈mb

x2i + ∑
i∈mf

(1 − xi)2
⎤⎥⎥⎥⎥⎦

(2)

�e optimal solution is
x = (L + λD)−1(λmf). (3)

Analysis

In feature vector (1), λs controls the amount of spatial coherence, λf the in�uence of optical �ow, and λp
the size of an image patch. K is the number of nearest neighbors for nonlocal matching.

λs < 1 λs ≈ 10 λs > 50
Figure 3 : Analysis on parameter λs.
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Figure 4 : Analysis on parameter λp.
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Figure 5 : Analysis on parameter λf .

Experiments
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Figure 6 : Comparison with geodesic matting [1] on talk using sparse strokes. Only strokes on the �rst frame are given and
all the αs are computed using our closed-form solution. While the α results look similar, αI shows our method extracts a
better foreground.
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Figure 7 : Comparison with video snapcut on walk. Our results (bottom) are robust to stark illumination changes given only
a single input trimap. �e shading on the walking man is constantly changing. In video snapcut (top), the user needs to
supply quite a number of additional strokes to achieve a comparable segmentation, for example, by carefully drawn control
points on Frame 15 and 51 as well as blue strokes on the intermediate frames.

More examples are available in the paper and the accompanying video.

Quantitative Comparison

Figure 8 : Quantitative comparison with nonlocal video matting [3].

Conclusions

Our contributions:
▸ Apply nonlocal principle to video matting.
▸ Embedmotion information directly into feature vector.
▸ Propose a two-frame a�nity matrix.
▸ Achieve competitive results with sparse user inputs.
Limitations and future work:
▸ Enable the keyframes to propagate in both directions.
▸ Improve the robustness by looking into useful features.
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