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Abstract—This paper proposes to apply the nonlocal principle to general alpha matting for the simultaneous extraction of multiple

image layers; each layer may have disjoint as well as coherent segments typical of foreground mattes in natural image matting. The
estimated alphas also satisfy the summation constraint. As in nonlocal matting, our approach does not assume the local color-line

model and does not require sophisticated sampling or learning strategies. On the other hand, our matting method generalizes well to

any color or feature space in any dimension, any number of alphas and layers at a pixel beyond two, and comes with an arguably
simpler implementation, which we have made publicly available. Our matting technique, aptly called KNN matting, capitalizes on the

nonlocal principle by using K nearest neighbors (KNN) in matching nonlocal neighborhoods, and contributes a simple and fast
algorithm that produces competitive results with sparse user markups. KNN matting has a closed-form solution that can leverage the

preconditioned conjugate gradient method to produce an efficient implementation. Experimental evaluation on benchmark datasets
indicates that our matting results are comparable to or of higher quality than state-of-the-art methods requiring more involved

implementation. In this paper, we take the nonlocal principle beyond alpha estimation and extract overlapping image layers using the
same Laplacian framework. Given the alpha value, our closed form solution can be elegantly generalized to solve the multilayer

extraction problem. We perform qualitative and quantitative comparisons to demonstrate the accuracy of the extracted image layers.

Index Terms—Natural image matting, layer extraction

Ç

1 INTRODUCTION

ALPHA matting refers to the problem of decomposing an
image into two layers, called foreground and back-

ground, which is a convex combination under the image
compositing equation:

I ¼ !F þ ð1$ !ÞB; ð1Þ

where I is the given pixel color, F is the unknown
foreground layer, B is the unknown background layer,
and ! is the unknown alpha matte. This compositing
equation takes a general form when there are n & 2 layers:

I ¼
Xn

i¼1

!iFi;
Xn

i¼1

!i ¼ 1: ð2Þ

We are interested in solving the general alpha matting
problem for extracting multiple image layers simulta-
neously with sparse user markups, where such markups
may fail approaches requiring reliable color samples to
work. Refer to Figs. 1 and 2. While the output can be
foreground/background layers exhibiting various degrees
of spatial coherence, as in natural image matting on single

RGB images, the extracted layers with fractional alpha
boundaries can also be disjoint, as those obtained in material
matting from multichannel images that capture spatially
varying bidirectional distribution function (SVBRDF).

Inspired by nonlocal matting [12] and sharing the
mathematical properties of nonlocal denoising [2], our
approach capitalizes on K nearest neighbors (KNN)
searching in the feature space for matching, and uses an
improved matching metric to achieve good results with a
simpler algorithm than [12]. We do not assume the local 4D
color-line model [14], [15] widely adopted by subsequent
matting approaches; thus our approach generalizes well in
any color space (e.g., HSV) in any dimensions (e.g., 6D
SVBRDF). It does not require a large kernel to collect good
samples [10], [12] in defining the Laplacian, nor does it
require good foreground and background sample pairs [27],
[9], [6], [21] (which need user markups of more than a few
clicks, much less that the foreground and background are
unknown themselves), nor any learning [30], [29] (where
training examples are issues), and yet our approach is not at
odds with these approaches when regarded as postproces-
sing for alpha refinement akin to [9]. Moreover, the
summation property, where the alphas are summed to
one at a pixel, is naturally guaranteed in two-layer or
multiple-layer extraction. Our matting technique, called
KNN matting, still enjoys a closed-form solution that can
harness the preconditioned conjugate gradient method
(PCG) [1], and runs in on the order of a few seconds for
high-resolution images in natural image matting after
accepting very sparse user markups: Our unoptimized
Matlab solver runs in 15-18 seconds on a computer with an
Intel Xeon E5520 CPU running at 2.27 GHz for images of
size 800' 600 available at the alpha matting evaluation
website [20]. Experimental evaluation on this benchmark
dataset indicates that our matting approach is competitive
in quality of results with acceptable speed.
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The preliminary version of this paper appeared in [3].
Besides updating the current state of the arts and presenting
more examples on !-matting, in this coverage we extend
the nonlocal principle to extract multiple and overlapping
image layers (i.e., F ) using the same Laplacian formulation,
thus keeping the simple strategy and implementation. We
show quantitatively and qualitatively the accuracy of the
extracted layers when compared with the results obtained
using closed form matting (CF matting) [14] and related
techniques where the local color-line model was adopted.

2 RELATED WORK

2.1 Natural Image Matting
For a thorough survey on matting see [28]; here, we cite the
works that are closely related to ours. The matting problem
is severely underconstrained, with more unknowns than
equations to solve, so user interaction is needed to resolve
ambiguities and constrain the solution. Spatial proximity
taking the form of user-supplied trimaps or strokes was
employed in [4] and [24], which causes significant errors
when the labels are distant, and becomes impractical for
matting materials with SVBRDF [13].

For images with piecewise smooth regions, spatial
connectivity in small image windows was used in defining
the matting Laplacian [14] for foreground extraction and later,
in [15], for multiple layer extraction. Good results are
guaranteed if the linear 4D color-line model within a local
3' 3 window holds [15]. The solution is guaranteed to lie in
the nullspace of the matting Laplacian if one of the three
conditions described in their Claim 1 is satisfied. These
conditions are, on the other hand, somewhat specific as to
how a single layer, two, and three overlapping layers should
behave in the color space. Violations are not uncommon
though, and in that case, they are often manifested into
tedious markups where the user needs to carefully mark up
relevant colors in textured regions at times nonlocal to one
another. The closed form solution for multiple layer
extraction was analyzed in [22], where the summation and
positivity constraints were investigated. The Laplacian
construction and line model assumption from [14], [15] were
still adopted.

On the other hand, the nonlocal principle has received a
lot of attention for its excellent results in image and movie
denoising [2]. Two recent CVPR contributions on natural
image matting [12], [9] have tapped into sampling
nonlocal neighborhoods.

In [12], reduced user input is achieved by accurate
clustering of foreground and background, where ideally the
user only needs to constrain a single pixel in each cluster for
computing an optimal matte. Thus, we prefer good cluster-
ing to good sampling of reliable foreground-background
pairs for the following reasons: Sampling techniques will fail
in very sparse inputs that can otherwise generate good
results in KNN matting; they do not generalize well to n > 2
layers due to the potentially prohibitive joint search space
when denser input is used; adopting various modeling or
sampling strategies usually leads to more complicated
implementation (e.g., use of randomized patchmatch in
[9], ray shooting in [6], PSF estimation in [19]), resulting in
more parameter setting or requiring more careful markups/
trimaps. As we will demonstrate, KNN matting requires
only one noncritical parameter K.

The other recent CVPR contribution consists of corre-
spondence search based on a cost function derived from the
compositing equation [9]. Noting that relevant color
sampling improves performance [27], [6], this approach
samples and matches in a randomized manner relevant
nonlocal neighbors in a joint foreground-background space
which, as mentioned, can become prohibitively large if it is
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Fig. 1. Using the sparse click inputs the same as nonlocal matting [12],
KNN matting produces better results. Top: Clearer and cleaner
boundary; middle: more details are preserved for hairs as well as the
red fuzzy object; bottom: the furs are more clearly separated from the
background.

Fig. 2. KNN matting on material matting using the sg dataset. Original images at the top; the bottom shows sparse user input (five clicks, one per
layer) and the five layers automatically extracted. Our result distinguishes the two different gold foil layers despite their subtle difference in materials
(where they were combined in [11]).



generalized to handle multiple layers. Earlier, a fast matting
method (up to 20' compared with [14]) was proposed in
[10] that uses large kernels for achieving high-quality
results. Since the same local color-line model and the same
Laplacian construction in [14], [15] were adopted, unsatis-
factory results are unavoidable where large windows were
used and the model assumption fails. So, a separate KD-tree
segmentation step was used to make the kernel size
adaptive to the trimap.

Contemporary work [21] uses texture information as
well as RGB color priors to define a novel objective
function. This method still belongs to the category of
sampling the best foreground/background pairs with
sophisticated texture manipulation and postprocessing.
Another recent work [29] adopted a learning approach,
and uses support vector machine to address the alpha-
matting problem.

2.2 Layer Extraction in Image Matting
Most existing works on image matting focus on alpha
estimation but not layer extraction (in the two-layer case,
foreground and background extraction) [12], [6], [18], [19],
[10], [9], [30], [27], [26], [8]. One usually simply applies !I to
matte out the foreground, which, as we will show, gives
suboptimal results than !F .

The following are a few exceptions where layer extrac-
tion was addressed. In Bayesian matting [4], the log
likelihood is maximized by iteratively computing the alpha
and foreground/background. Poisson matting [24] esti-
mates foreground and background in their global version.
In CF matting [14], [15], the foreground and background are
solved by using the estimated alpha and the compositing
equation with a spatial coherence term. In [22], after the
mattes have been estimated, the authors used [14] to
reconstruct the image layers. Earlier, the iterative optimiza-
tion [26] also directly made use of the compositing equation
with known alpha in their foreground and background
layer estimation. Recently, material matting [13] adopted
spatial and texture coherence constraints for extracting
multiple layers. In this paper, we show that our closed form
solution can be elegantly generalized to extract overlapping
image layers. We perform qualitative and quantitative
analysis, focusing on comparing the local color-line model
and the nonlocal principle in transparent and overlapping
layer extraction from single images.

3 NONLOCAL PRINCIPLE FOR ALPHA MATTING

As in nonlocal matting [12], our KNN matting capitalizes on
the nonlocal principle [2] in constructing affinities to
produce good graph clusters. Consequently, sparse input
is sufficient for extracting the respective image layers. It was
also noted in [12] that the matting Laplacian proposed in [14]
in many cases is not conducive to good clusters, especially
when the local color-line model assumption fails, which is
manifested into small and localized clusters. These clusters
are combined into larger ones through a nonlinear optimi-
zation scheme in [15] biased toward binary-valued alphas.

The working assumption of the nonlocal principle [2] is
that a denoised pixel i is a weighted sum of the pixels with
similar appearance to the weights given by a kernel
function Kði; jÞ. Recall in [12] the following:

E½XðiÞ) *
X

j

XðjÞ Kði; jÞ 1

Di
; ð3Þ

Kði; jÞ ¼ exp $ 1

h2
1

kXðiÞ $XðjÞk2
g $

1

h2
2

d2
ij

! "
; ð4Þ

Di ¼
X

j

Kði; jÞ; ð5Þ

where XðiÞ is a feature vector computed using the
information at/around pixel i, and dij is the pixel distance
between pixels i and j, k + kg is a norm weighted by a center-
weighted Gaussian, h1 and h2 are some constants found
empirically. By analogy of (3), the expected value of the
alpha matte

E½!i) *
X

j

!jKði; jÞ
1

Di
or Di!i * Kði; +ÞT!!!!; ð6Þ

where !!!! is the vector of all ! values over the input image.
As described in [12]:

. the nonlocal principle applies to !!!! as in (6);

. the conditional distribution !!!! given X is E½!ijXðiÞ ¼
XðjÞ) ¼ !j, that is, pixels having the same appear-
ance are expected to share the same alpha value.

The nonlocal principle of alpha matting basically replaces
the local color-line assumption of [14], [15] applied in a local
window, which, although widely adopted, can be easily
violated in practice when large kernels are used (such as [10]).

Following the derivation D!!!! * A!!!!, where A ¼ ½Kði; jÞ) is
an N 'N affinity matrix and D ¼ diagðDiÞ is an N 'N
diagonal matrix, whereN is the total number of pixels. Thus,
ðD$AÞ!!!! * 0 or !!!!TLc!!!! * 0, where Lc ¼ ðD$AÞT ðD$AÞ
is called the clustering Laplacian. This basically solves the
quadratic minimization problem, min!!

P
Aijð!i $ !jÞ2.

In nonlocal matting, the extraction Laplacian (whose
derivation is more involved) rather than the above simpler
clustering Laplacian was used in tandem with user-
supplied input for alpha matting. While it was shown for
clustering Laplacian in [12] that sparse input suffices for
good results, the estimated alphas along edges are not
accurate due to the use of spatial patches in computing
affinities A. Moreover, the implementation in [12] requires a
sufficiently large kernel for collecting and matching non-
local neighborhoods, so specialized implementation con-
siderations are needed to make it practical (c.f., a nice proof
in fast matting [10]). The choice of parameters h1 and h2 also
affect results quality.

4 KNN MATTING

In the following, we describe and analyze our technical
contributions of KNN matting, which does not rely on the
local color-line model, does not apply regularization, does
not apply machine learning, and does not have the issue of
kernel size. They look straightforward at first glance (with
the corresponding implementation definitely straightfor-
ward); our analysis and experimental results, on the other
hand, show that our approach provides a simple, fast, and
better solution than nonlocal matting [12], with an elegant
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generalization to multiple layers extraction. Our unopti-
mized Matlab implementation runs in a few seconds on
800' 600 examples available at the alpha matting evalua-
tion website [20] and our results were ranked high in [20]
among the state of the art in natural image matting, which
may require a complicated implementation. In most cases,
only one click is needed for extracting each material layer
from SVBRDF data [11] in material matting.

4.1 Computing A Using KNN

Computing A in KNN matting involves collecting nonlocal
neighborhoods j of a pixel i before their feature vectors
Xð+Þs are matched using Kði; jÞ.

Rather than using a large kernel as in fast matting and
nonlocal matting, both operating in the spatial image
domain, given a pixel i, we implement the nonlocal principle
by computing KNN in the feature space. Our implementa-
tion was made easy by using FLANN [25], which is
demonstrated to be very efficient in practice, running on
the order of a few seconds for an 800' 600 image in natural
image matting. We notice in nonlocal matting [12] that
special implementation considerations and restrictions were
needed to cope with the computation load involving large
kernels. Since kernel size is not an issue in this paper due to
efficient KNN search, the running time for computing one
row of A is OðKqÞ, where OðqÞ is the per-query time in
FLANN. A has up to 2NK entries and recall that since
Kði; jÞ ¼ Kðj; iÞ,A is a symmetric matrix. Fig. 3 compares the
nonlocal neighborhoods computed using KNN matting and
nonlocal matting [12], showing the efficacy of KNN search-
ing in feature space in implementing the nonlocal principle.
Fig. 4 visualizes a typical A computed in KNN matting.

Typical values of K range from only 3 (for material
matting with more descriptive feature vector) to 15 (for

natural image matting). Despite the fact that K is not a
critical parameter and is kept constant in our experiments,
processing speed and memory consumption are issues.
Without compromising the result quality, that is, to build
sufficient relations among pixels, smaller K means a shorter
KNN search time as well as a shorter time for solving a
sparser/faster linear system. On the other hand, a very
large K will produce undesired artifacts in the alpha result,
where a larger number of irrelevant matches will start to
take its toll, not to mention the 12-GB memory requirement
when K > 300. Fig. 5 shows a qualitative comparison under
different values of K. See the supplemental materials,
which can be found in the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2013.18, for more comparisons.

4.2 Feature Vector X with Spatial Coordinates

For natural matting, a feature vector XðiÞ at a given pixel i
that includes spatial coordinates to reinforce spatial
coherence can be defined as

XðiÞ ¼ ðcosðhÞ; sinðhÞ; s; v; x; yÞi; ð7Þ

where h; s; v are the respective HSV coordinates and ðx; yÞ
are the spatial coordinates of pixel i. As shown in Fig. 6,
KNN matting is better on HSV than RGB color space on the
troll example. Few previous matting approaches use the
HSV color space. Feature vector can be analogously defined
for material matting by concatenating pixel observations
under various lighting directions, which forms a high-
dimensional vector. For material without exhibiting spatial
coherence (e.g., spray paint) the spatial coordinates can be
turned off.

Note the differences with nonlocal matting in encoding
spatial coherence: Spatial coordinates are incorporated as
part of our feature vector rather than considered separately
using dij in nonlocal matting (see (4)) with empirical setting
ofh2 to control its influence. Further, an image patch centered
at a pixel [12] is not used in our feature vector definition. As
will be demonstrated in our extensive experimental results,
without the added information of a larger patch, KNN
matting ranks high among the state of the art [20].

4.3 Kernel Function Kði; jÞ for Soft Segmentation

We analyze common choices of kernel function KðxÞ to
justify ours, which is 1$ x:
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Fig. 3. KNN and nonlocal affinities comparison given the same pixel
(marked white). Nonlocal matting uses a spatial window centered at the
given pixel for sampling nonlocal neighborhoods (radius ¼ 9 in [12]).
KNN matting collects more matching neighborhoods globally rather than
within an image window, while spending significantly less computation
time (K ¼ 81 here).

Fig. 4. Typical nonlocal affinities matrix A in KNN matting (left, with
K ¼ 10) which is not as strongly diagonal as its counterpart from
nonlocal matting (right, with radius ¼ 3). The KNN matrix is still sparse.

Fig. 5. Parameter K is not critical. Although the results are similar,
smaller K means faster solving time and fewer artifacts caused by
irrelevant matches when K ¼ 300.



Kði; jÞ ¼ 1$ kXðiÞ $XðjÞk
C

; ð8Þ

where C is the least upper bound of kXðiÞ $XðjÞk to make
Kði; jÞ 2 ½0; 1). Because (8) puts equal emphasis over the
range ½0; 1), not biasing to either foreground or background,
the three overlapping layers can be faithfully extracted as
shown in Fig. 7. There is no parameter to set (c.f., h1 in (4))
and KNN allows returning the smallest kXðiÞ $XðjÞk.

A typical choice of kernels in machine learning, expð$xÞ,
was used in [12]. We argue it is not a good choice for
modeling optical blur and soft segmentation and, in fact, it
favors hard segmentation: Fig. 7 shows a synthetic example
where three layers are blended by fractional alphas; the same
KNN matting is run on this image except that the kernel
function is replaced by expð$xÞ. As shown in the figure, hard
segments are obtained. The hard segmentation results can be
attributed to the nonmaximal suppression property of the
Gaussian kernel, where nonforeground (or nonbackground)
is heavily penalized by the long tail of the Gaussian.

In nonlocal matting [12], Lee and Wu noted that the
clustering Laplacian causes inaccuracy around edges, while
we believe the major cause may be due to their use of the
exponential term in the kernel function. Barring factors such
as image outliers and color shifts due to Bayer patterns,
suppose F ¼ ð1; 0; 0Þ and B ¼ ð0; 0; 0Þ. For a pixel’s value
E ¼ ð0:3; 0; 0Þ, using (4) without the spatial term, KðF;EÞ ¼
expð$kF $ Ek2=h2

1Þ ¼ expð$0:72=0:01Þ ¼ expð$49Þ a n d
KðB;EÞ ¼ expð$0:32=0:01Þ ¼ expð$9Þ. KðF;EÞ , KðB;EÞ,
making KðF;EÞ negligible and biasing the solution toward
B, and thus hard segmentation results. Numerically, this
also causes instability in computing their clustering Lapla-
cian, which is susceptible to singularity because many terms
are negligibly small.

4.4 Closed-Form Solution with Fast Implementation

While the clustering Laplacian Lc ¼ ðD$AÞT ðD$AÞ is
conducive to good graph clusters, the Laplacian L ¼ D$A
is sparser while running much faster (up to 100 times faster
than Lc) without compromising the results except for a few

more user inputs being required to achieve similar visual
results. This can be regarded as a tradeoff between running
time, amount of user input, and result qualities. Without
loss of generality, L is used in this section.

When user input in the form of trimaps or scribbles
comes along, it can be shown that the closed-form solution
for extracting n & 2 layers is:

ðLþ "DÞ
Xn

i

!!!!i ¼ "m; ð9Þ

where D ¼ diagðmÞ and m is a binary vector of indices of all
the marked-up pixels, and " is a constant controlling user’s
confidence on the markups. Our optimization function gðxÞ
has a closed-form solution:

gðxÞ ¼ xTLxþ "
X

i2m$v

x2
i þ "

X

i2v

ðxi $ 1Þ2; ð10Þ

where v is a binary vector of pixel indices corresponding to
user markups for a given layer. Then, gðxÞ is

xTLxþ "
X

i2m$v

x2
i þ "

X

i2v

x2
i $ 2"vTxþ "jvj

¼ xTLxþ "
X

i2m

x2
i $ 2"vTxþ "jvj

¼ 1

2
xT2ðLþ "DÞx$ 2"vTxþ "jvj

¼ 1

2
xTHx$ cTxþ "jvj;

where "jvj is a constant. Note that H ¼ 2ðLþ "DÞ is
positive semidefinite because L is positive semidefinite
and D is diagonal matrix produced by the binary vector m.
Differentiating gðxÞ w.r.t. x and equating the result to zero:

@g

@x
¼ Hx$ c ¼ 0: ð11Þ

Thus. the optimal solution is

H$1c ¼ ðLþ "DÞ$1ð"vÞ: ð12Þ

This echoes Lemma 1 in [12] that contributes a smaller and
more accurate solver than the one in [30], which gives the
optimal solution in closed form.
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Fig. 7. The expð$xÞ term tends to generate hard segments, although the
input consists of overlapping image layers. On the contrary, the 1$ x
term without spatial coordinates produces soft segments closer to the
ground truth. Moreover, using the 1$ x term with spatial coordinates,
we can generate an alpha matte with smoother transition between
neighboring pixels.

Fig. 6. KNN matting can operate in any color space simply by changing
the definition of the feature vector in (7). Here we show significant
improvement in the result of troll using the HSV space on a coarse
trimap. The hairs and the bridge are dark, with close color values in the
RGB space: a hair pixel has RGB (20, 31, 33) and a bridge pixel (40, 30,
33) in 255 scale, whereas the hue of the hair is 126 degrees and that of
bridge is 15 degrees.



Rather than using the coarse-to-fine technique in the solver
in [14], since H is a large and sparse matrix which is
symmetric and semipositive definite we can leverage the
PCG [1] running about five times faster than the conventional
conjugate method (we use ichol provided in Matlab
2011b as the preconditioner), on the order of a few seconds
for solving input images available at the alpha matting
evaluation website. We also note that in [10] the traditional
LU decomposition method and conjugate gradient method
were compared. The iterative conjugate gradient method
was used because, for their large kernels, information
propagation can be faster.

4.5 Summation Property

KNN matting in its general form for extracting n & 2 layers
satisfies the summation property, that is, the estimated
alphas at any given pixel sum up to 1. From (11):

ðLþ "DÞ!!1 ¼ "v1

..

.

ðLþ "DÞ!!!!n ¼ "vn

gives

ðLþ "DÞ
Xn

i¼1

!!!!i ¼ "
Xn

i¼1

vi ¼ "m: ð13Þ

Since

ðLþ "DÞ1 ¼ "D1 ¼ "m; ð14Þ

as the nullspace of Laplacian L is 1 a constant vector with
all 1s. Since Lþ "D is invertible,

Pn
i¼1 !!!!i ¼ 1.

In [22, Theorem 2], the summation property was also
shown for multiple layer extraction for alpha matting RGB
images, where the same Laplacian from [14], [15] was still
used. In practice, KNN matting’s output alphas are almost
within ½0; 1). However, the summation property does not
hold for sampling-based algorithms such as [9] when it
comes to multiple layer extraction: To obtain the alpha matte
of a layer, this layer is regarded as foreground while others
are background. Consider three layers, L1 ¼ ð1; 0; 0Þ,
L2 ¼ ð0; 1; 0Þ, L3 ¼ ð0; 0; 1Þ, and the pixel I ¼ ð13 ;

1
3 ;

1
3Þ. To

obtain the alpha matte of L1, let L1 be foreground F and the
union of L2 and L3 be background B. According to (2) in [9],
! ¼ ðI$BÞðF$BÞkF$Bk2 ; the alpha value for L1 is 0.5. Similarly, the
alpha value for L2 or L3 is also 0.5. Consequently, they sum
up to 1.5. Normalization may help, but the normalization
factor will vary from pixel to pixel. Also, the approach in [9]
cannot be easily generalized to handle multiple layers due to
the potentially prohibitive joint layer space when more than
two layers are involved.

5 RESULTS ON ALPHA ESTIMATION

We first show in this section the results on material matting
(n & 2 layers) on SVBRDF data from [11]. Then, we will
show results on natural image matting (n ¼ 2) using real
images as well as the examples in [20], calling attention to
state of the art such as CF matting [14], nonlocal matting
[12], fast and global matting [10], [9], learning-based (LB)
matting [30], SVR matting [29], and weighted color matting

[21]. All of our results, including the natural image matting
results and their comparisons with state-of-the-art techni-
ques, are included in the online supplemental materials.
Due to space limits, here we highlight a few results.

5.1 Material Matting

We first present results on material matting for extracting
more than two alphas at a given pixel.

Related work. Much work has been done on BRDF
decomposition, aiming at reducing the dimensionality of
an SVBRDF, which is 6D in its general form. Decomposi-
tions returned by principal component analysis and
independent component analysis and its extensions do not
in general correspond to different materials and thus are not
conducive to high-level editing. Factorization approaches
such as homomorphic factorization [17] and matrix factor-
ization [5] decompose a BRDF into smaller parts, but such
decompositions also do not promise that individual seg-
ments correspond to single materials. Soft segmentation is
required when different materials blend together. Blending
weights are available in [11], where an SVBRDF was
decomposed into specular and diffuse basis components
that are homogeneous, as previously done in [7]. In [13], an
SVBRDF was separated into simpler components with
opacity maps. The probabilistic formulation takes into
consideration local and texture variations in their two-layer
separation, and was applied successively rather than
simultaneously to extract multiple material layers, so
accumulation errors may occur.

Experimental results. The clustering Laplacian was used in
our material matting experiments, where a few user-
supplied clicks are all that KNN matting needed to produce
satisfactory results shown in Figs. 2 and 8. On average, only
one click per layer is needed. In sg, five overlapping
material mattes are produced; despite the fact that the matte
for “blue paper” has several disconnected components, one
click is all it takes for matting the material. KNN matting
produces good mattes for dove, where the moon and the sky
mattes are soft segments, and also for wp1, where hard
segments should be produced. In wt, the scotch tape
(invisible here) was correctly matted out. In wp2 (see in
the online supplemental material), the silver foil is brushed
in three general directions, which produces different BRDF
responses distinguishable in the feature space for KNN
matting to output the visually correct result. In a more
challenging dataset mask, subtle materials such as the lips
and the gem were matted out. This mask example is
arguably more challenging than the above for the following
reasons: We used budget capture equipment (c.f., precision
equipment in [11]), the object geometry is highly complex
and produces a lot of cast shadows (c.f., relative flat
geometry in [11]), the mixing of the blue and gold paints
introduces a lot of color ambiguities. As shown in the
figure, more input clicks are required to produce good
results. Here, spatial coordinates were not included in
defining a feature vector (7) where SVBRDF does not
usually exhibit strong spatial coherence. Table 1 tabulates
the running times of all of the SVBRDF examples used in
this paper. Thanks to FLANN computing, the Laplacian
takes only a few seconds for matching nonlocal neighbor-
hoods even when they are far away in the spatial domain.
After computing Laplacians, individual layer extraction can
be executed in parallel, so we record the maximum
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extraction time among all layers for each example. More
details are available in the online supplemental material.

5.2 Natural Image Matting

The Laplacian L ¼ D$A was used in KNN matting in this
section to obtain a sparser system for efficiency in our
natural image matting experiments. Recall at the beginning
of Section 4.4 the difference with the clustering Laplacian.

Table 2 tabulates the partial ranking among the methods
evaluated in [20], showing that KNN matting is competitive
overall on the same dense trimaps. Fig. 9 shows the
qualitative comparison of selected examples on fuzzy objects
and objects with holes (with complete results and compar-
ison with CF and LB matting in [20] available in the online
supplemental material), noting the pineapple used in [10] as a

failure case on local color-line assumption [14], whereas
KNN matting performed better than shared matting on this
example (Fig. 9 and Table 2) without sophisticated sampling
and learning strategies, such as [29], [21].

KNN matting gives top performance on difficult images
(plastic bag and pineapple, Fig. 9) while [20] does not rank us
high on arguably easier ones (donkey and elephant, see in the
online supplemental material), although we obtain good
alpha mattes quantitatively the same as other top-ranked
methods on such easier examples. For this reason, we define
the normalized score of a method given a trimap as the ratio
of the best MSE for that trimap to its MSE. We argue that
normalized scores are fairer than average ranks: For the
donkey user-trimap, at the time of writing, the third to 15th
methods have the same MSE 0.3, but shared matting ranks
third, while large kernel matting ranks 15th. In summary,
regardless of ranking methods, given the trimaps from [20],
our results are better than CF matting [14], fast and global
matting [10], [9], and are visually similar to the high-quality
results of shared matting [6], weighted color matting [21],
and SVR matting [29]. Among all the methods available on
[20] at the time of writing, KNN matting is the second best
approach in terms of normalized score. The best scorer, SVR
matting [29], is LB, where training data is an issue. KNN
matting does not require any learning while producing
comparable results.

At times a lay user may not be able provide detailed
trimaps akin to those in [20]; a few clicks or thin strokes are
expected. Fig. 1 shows our visually better results compared
with nonlocal matting [12] based on the same input clicks
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Fig. 8. KNN matting on material matting. In most cases, only one click per layer is needed. In mask, clicks with the same color belong to one layer.
See all of the material matting result images in the online supplemental material.

TABLE 1
Running Times in Seconds for Material Matting

on a Machine with 3.4-GHz CPU

n is the number of layers; each can be computed in parallel after the
Laplacian is computed. Running times shown here are the time for
computing the Laplacian and the maximum time for computing an alpha
layer in each example. Refer to the online supplemental material for
other details.



used in the paper. Fig. 10 compares the results on very
sparse input, showing that KNN matting preserves the
fuzzy boundaries as well as the solid portions of the
foreground better than other state of the arts. Fig. 11 shows
the MSE comparison of our method with closed form
matting, spectral matting, LB matting on six examples with
ground truth, where the input consists of only a few strokes.

In [20], most images are shot in front of a computer
screen that may not accurately represent natural images in
real applications. Fig. 12 shows KNN matting results on real
photos. Notice without the large hue difference induced by
a computer screen, KNN matting is still capable of
extracting the details of hair in real photos.

The failure mode of KNN matting is shown in Fig. 13.
Our method degrades under severe color ambiguity
because color information largely dominates our feature
vector (7). On the other hand, a blurry image in general is
modeled by image convolution rather than the image
compositing equation (1) assumed in alpha matting. Recent
work [16] tackled this problem by adding a motion
regularization term to the Laplacian energy function.
Fig. 14 shows more comparisons from [20].

6 LAYER ESTIMATION

Most existing works on natural image matting focus only on
alpha extraction, with the few exceptions described in the
related work section. To matte out the foreground, !I is
usually applied. Using the same alpha, Fig. 15 shows one
example where !F is more faithful than !I in foreground
extraction, which we believe should be done when F can be
reliably estimated.

Given !!!!, we show in this section that respective image
layers Fi can be reliably extracted simultaneously in closed
form by solving a similar Laplacian energy introduced in the
previous sections. Thus, our method not only generalizes to

n & 2 layers but also provides a uniform and easy-to-
implement scheme for both alpha and layer estimation.

As was done in the image matting works reviewed in the
related work section, where layer extraction was addressed,
while our objective function still makes use of the composit-
ing equation to encode the data term, we harness the power
of KNN for searching matching neighbors in the feature
space in a nonlocal manner, thus also avoiding the draw-
backs of the color-line model in a local window in encoding
the overall energy, as in the case of our alpha estimation.

Specifically, given !!!!, I ¼
Pn

i¼1 !iFi is still an under-
constrained system of linear equations with 3nN unknowns
and 3N equations, where N is the total number of pixels
and n is the total number of image layers to be estimated at
each pixel location. Similar to the assumptions used in
alpha estimation, we employ two soft constraints for each
layer Fi: Given two pixel locations j and k,

1. if IðjÞ and IðkÞ share a similar color, it is likely that
FiðjÞ * FiðkÞ;

2. if IðjÞ and IðkÞ are spatial neighbors, it is likely that
FiðjÞ * FiðkÞ.

Similarly done in alpha estimation, each pixel can be
represented as a feature vector by concatenating its color
and location coordinates, with its matching neighbors
found by KNN search.

Now, for each color channel, we proceed to define a
quadratic energy function that consists of a KNN matching
term and a data term, as follows:

X

i;j;k

Aiðj; kÞðFiðjÞ $ FiðkÞÞ2 þ "
X

k

X

i

!iðkÞFiðkÞ $ IðkÞ

 !2

:

ð15Þ

Compared with alpha estimation, the user markup is
already implied in the data term here when ! ¼ 1 or 0.
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TABLE 2
Excerpt of the Ranking Information from the Alpha Matting Evaluation Website [20]

Normalized score is defined in the text. Without any learning process [29] or sophisticated sampling strategy [21], [9], KNN ranks top in both average
ranking and normalized score. Complete ranking information is in the online supplemental material.



We impose in this layer estimation problem stronger spatial
coherence along the matte boundary by considering both
KNN matching neighbors in encoding the affinity matrix
A ¼ ½Aiðj; kÞ). Mathematically, in the matching term, A is
defined as follows:

Aiðj; kÞ ¼ minðWiðjÞ;WiðkÞÞKðIj; IkÞ;
WiðjÞ ¼ 1$ j2!iðjÞ $ 1j;

ð16Þ

where W is used to reweigh pixel contributions, giving
more weight to those along the matte boundary which are
indicated by smaller alpha values. We believe that using the
weight W is more robust than the derivatives of ! suggested
in (19) in [14]: Consider the case !iðjÞ is neither 1 nor 0 (else
the case is trivial). If it is equal to its four connected
neighbors’ alpha values, then the derivative of !iðjÞ is zero
and only the data term remains effective. Thus, we cannot
determine the optimal Fi. When !i is very close to its four

connected neighbors’ alpha values, the system to solve

tends to be numerically unstable. On the contrary, W is

always nonzero when ! is neither 1 nor 0.
The solution that minimizes (15) can be found by

differentiating the energy function with respect to each

unknown FiðkÞ. The following details the mathematics.
First, let F be a column vector that concatenates all Fi, D

be a matrix of size nN ' nN defined for each two-tuple
ðFiðjÞ; FiðkÞÞ such that D½ði$ 1ÞN þ j; ði$ 1ÞN þ k) ¼
!iðjÞ!iðkÞ. Thus, D is a block diagonal matrix. In matrix
form we have

F ¼

F1

F2

..

.

Fn

2

6664

3

7775

nN'1

; ð17Þ
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Fig. 9. KNN matting on natural images from [20]. The MSE rankings are from [20]. Top: Images with very similar background/foreground color and
fuzzy boundary; KNN ranks the second after SVR. Middle: Images with holes; KNN ranks the fourth with the same MSE as the second and third
ranked methods. Bottom: Images with high transparency; KNN ranks the first in this example. This figure is best viewed in the electronic version.
More comparisons are available on [20].



D ¼

!!!!1!!!!T1
!!!!2!!!!T2

. .
.

!!!!n!!!!Tn

2

6664

3

7775

nN'nN

; ð18Þ

and we let

A0 ¼

A
A

. .
.

A

2

664

3

775

nN'nN

: ð19Þ

Let L be the Laplacian matrix derived from A0 and B is
a nN ' 1 vector, where Bði$1ÞNþk ¼ !iðkÞIðkÞ. By differ-
entiating the energy function and equating the result to
zero, we get

2LFþ 2"DF ¼ 2"B;

ðLþ "DÞF ¼ "B;

F ¼ ðLþ "DÞ$1"B:

Thus, the closed solution of F is derived where all layers

can be estimated simultaneously in theory. In practice, we

adopt an iterative computation scheme such as PCG, which

is similarly done in the alpha estimation.

6.1 Qualitative Evaluation

In this section, we show empirically that our layer

estimation based on KNN matting can recover more

faithful layer color information compared to closed form

2184 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 9, SEPTEMBER 2013

Fig. 10. Comparison on sparse user-supplied trimaps. KNN matting produces better results in around 15 seconds using PCG in each case, whereas
it takes 150 seconds for SP matting. See more comparisons in the online supplemental materials.

Fig. 11. For very sparse input in Fig. 10, KNN matting is better than other
state-of-the-art matting methods that rely on foreground/background
color sampling and/or local color line model. Fig. 12. KNN matting on real photos.



matting [14] for two-layer matting and [22] for n-layer
matting, both of which are based on the color-line model
within a local support.

The performance of the tested algorithms differs mostly
around fractional boundaries where ! * 0:5 when most
ambiguous situations occur. Fig. 16 shows the qualitative
comparison on benchmark images of hairy objects obtained
from [20]. Note that !I is highly affected by the background

color in all of the examples. The layers output by closed
form matting are better but cannot outperform our layers,
where more fine details are preserved.

Fig. 17 compares the multiple layer extraction results of
[22] with those extracted by our method, using the same
input images and strokes. As shown in the figure, our
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Fig. 13. KNN matting degrades gracefully under color ambiguity and
motion blur due to, respectively, insufficient color information and
different image model.

Fig. 14. Natural image matting comparison from [20]. Results of all of the 27 cases are included in the online supplemental material.

Fig. 15. Our layer estimation can better separate the foreground from
the background. The pink hair is contaminated with green or purple
colors, whereas in our case the hair remains pink.



results present fewer artifacts and are less contaminated by

the background in the three layers of Monster and five layers

of Lion.

6.2 Quantitative Evaluation

To quantitatively evaluate our layer estimation results, we

tabulate the errors against known or ground-truth fore-

grounds; the latter are computed using the following
scheme. Our evaluation here still focuses on comparing
the local color-line model and the nonlocal principle.

To obtain ground-truth foreground, we use images of
furry objects shot in front of a blue screen. Theoretically,
given a known background B and !, we can get
F ¼ ðI $ ð1$ !ÞBÞ=!. In practice, however, this method is
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Fig. 16. Qualitative comparison on two-layer extraction with known !. Top: KNN matting preserves the highest amount of details without mixing the
background colors. Middle: !I and CF fail to completely eliminate the background blue sky, while the foreground extracted using KNN matting does
not visually have any remnant of the background, and preserves more and better details. Bottom: Due to the local color-line model assumption, the
end of the hair appears darker than the true color. On the other hand, this artifact is less apparent in the foreground layer extracted by KNN matting.

Fig. 17. Qualitative comparison with [22] on n-layer extraction with known !. The top two rows compare their results with ours on the Monster
example. KNN Matting extracts the sky and the monster layers with less blurring and suffers fewer artifacts around the hair. The bottom two rows
show the results on Lion. The hair/sky boundary in the sky layer is blurry in their estimation, while our method produces a clearer boundary. Similarly,
our sky/lion boundary depicted in the lion layer is sharper in delineating the fine hair strands. Input and output of [22] are courtesy of D. Singaraju.



not stable because ! can be zero or very close to zero at
some pixels. Also, I $ ð1$ !ÞB may be negative when ! or
B is in fact not accurate. To tackle this problem, while one
can use blue screen matting [23] we propose an alternative
by solving the following energy function to obtain our
ground-truth F when ! and B are given:

kI $ !F $ ð1$ !ÞBk2
2

þ "B
X
kBðiÞ $BðjÞk2

2 þ "F
X
kF ðiÞ $ F ðjÞk2

2;
ð20Þ

where pixels i and j are spatial neighbors. We impose
strong spatial coherence on B, which is the blue or constant-
colored background, and weaker spatial coherence on F to
avoid overfitting: In our experiments, we set "B ¼ 1 and
"F ¼ 0:01. We obtain very good ground truth even when
the background is noisy and contains more than one color.
Fig. 18 shows one set of sample images with the computed
ground-truth foregrounds.

Fig. 19 shows the quantitative sum of absolute difference
(SAD) comparison results on the 21 images available from
the dataset in [15] where the ground-truth foregrounds are
computed using our method described above. In almost all
cases, our layer extraction based on KNN matting produces
the lowest error among the three approaches. Fig. 20 shows
the result of !I, closed form, and KNN matting, as well
as the difference between the respective ground-truth
foregrounds. The difference images are boosted by histo-
gram equalization for visualization purpose.

7 CONCLUSION

Rather than adopting the color-line model assumption in a
local window or relying on sophisticated sampling strate-

gies on foreground and background pixels, or any learning
strategy where training data is an issue, we propose KNN
matting that employs the nonlocal principle for natural
image matting and material matting, taking a significant
step toward producing a fast system that outputs better or
competitive results and is easier to implement (our
implementation only has about 50 lines of Matlab codes,
see the online supplemental material; also available at the
first author’s website). It generalizes well to extracting n & 2
multiple layers in non-RGB color space in any dimensions
where kernel size is also not an issue. Our general alpha
matting approach allows the simultaneous extraction of
multiple overlapping layers based on sparse input trimaps
and outputs alphas satisfying the summation property.
Extensive experiments and comparisons using standard
datasets show that our method is competitive among the
state of the art. Meanwhile, because KNN matting con-
structs clustering Laplacian based on feature vector, the
choice of elements in feature vector is instrumental.

In this paper, we show that the same Laplacian
formulation can be used for layer extraction once the alpha
values are known. The above implementation can be
directly deployed. We performed qualitative and quantita-
tive evaluation for extracting overlapping layers in natural
image matting where the number of layers n & 2. Our
results indicate that KNN matting, which adopts the
nonlocal principle, performs in general better than closed
form matting and related techniques [22] where the local
color-line model was adopted.

Future work includes investigating the relationship
between the nonlocal principle and the color-line model
applied nonlocally in general alpha matting of multiple
layers from images and video matting.
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Fig. 18. Ground-truth foreground image computed using our proposed
method.

Fig. 19. SAD on the difference images. Our layer extraction based on
KNN matting has the lowest errors in almost all of the 21 test cases.

Fig. 20. Foreground images computed and corresponding difference
maps.
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