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A woman is seen holding 
a pose in front of them.

A woman is seen speaking
to the camera and leads
into her playing a routine.

The crowd cheers for 
the people.

A woman is seen holding 
a drum set with others 
while others watch on 
the sidelines.

Raw Audio

User Feedback

“I have no clue of the video
content but only heard the
sounds of drums...”

“The descriptions are good. I
could picture the drum corps
walking outside...”

Figure 1: Our audio description system automatically generates audio descriptions for videos. Our user study shows that, with
our audio descriptions, blind participants are more confident about what’s happening in a video, whereas they expressed
uncertainty listening to only the input raw audio.

ABSTRACT
Video accessibility is essential for people with visual impairments.
Audio descriptions describe what is happening on-screen, e.g., phys-
ical actions, facial expressions, and scene changes. Generating high-
quality audio descriptions requires a lot of manual description
generation [50]. To address this accessibility obstacle, we built a
system that analyzes the audiovisual contents of a video and gener-
ates the audio descriptions. The system consisted of three modules:
AD insertion time prediction, AD generation, and AD optimization.
We evaluated the quality of our system on five types of videos by
conducting qualitative studies with 20 sighted users and 12 users
who were blind or visually impaired. Our findings revealed how
audio description preferences varied with user types and video
types. Based on our study’s analysis, we provided recommenda-
tions for the development of future audio description generation
technologies.
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1 INTRODUCTION
In 2019, videos are accounted for more than 60% of total internet
downstream traffic 1. Visual information is ubiquitously used for
communication, yet people who are blind or who have low vision
cannot directly consume video content. Audio descriptions (AD)
explain the audiovisual events happening in a scene that are not
audible to blind users. According to the American Council of the
Blind, out of the 75 million video titles that Amazon Prime Video
offers, only around 1, 843 (0.0025%) are AD videos2. On the other
hand, in the past few decades, we have seen steady progress in
improving the coverage of closed captions, allowing people who
are deaf and hard-of-hearing in enjoying videos. Thanks to deep
1https://www.sandvine.com/inthenews/netflix-falls-to-second-place-in-global-
internet-traffic-share
2https://market.us/statistics/online-video-and-streaming-sites/amazon-prime-video/
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learning and automatic speech recognition, platforms like YouTube
automatically generate closed captions for all videos in spoken
English [39]. In comparison, the percentage of videos with AD is
significantly less than those with closed captions. Particularly, a
vast majority of user-generated content shared online does not
have AD, making them challenging for blind users to consume.
Unlike automatic closed caption, audio descriptions are usually
added manually and cost around $30 per hour of video, which is
unscalable given the sheer amount of user-generated content [33].
Blind users find it valuable to watch videos, television, or movies
independently, which, without an automatic AD generator, is hard
to achieve [14]. Moreover, AD could also be used to enhance the
visual experience for sighted users [40] (e.g., enhanced memory
for visual details) and be a powerful tool to be duly exploited in
aiding literacy development, language acquisition, and language
learning for vulnerable sighted viewers [43]. In this work, we built
an automatic AD generation system and analyzed the challenges
regarding current video understanding research.

To investigate the challenges of an automatic AD generation
system, we compare it against a standard speech recognition system
according to three aspects: when, what, and how to generate the
output. In automatic speech recognition systems, all three aspects
are fairly deterministic – a good caption system should output the
spoken words (the what) faithfully and accurately (the how) at the
audio onsets of each word (the when). For AD, none of the three
aspects is as well-defined as in automatic speech recognition.

• When should an audio description be included? We believe
that whenever there is an inaudible butmeaningful event, an
AD should be generated. However, it is unclear what is an
inaudible meaningful event. For example, a camera zoom-in
motion is inaudible but it may (or may not) tell a meaningful
visual story; a scene transition is usually meaningful, yet
considering the ambient audio alone it may (or may not)
already be audible.

• What should the audio description say? In every video frame,
many audiovisual events could happen, ranging from the
main events taking place close to the camera, to the more
subtle activities of people and objects in the background.
The amount of content and level of detail users want from
an audio description can vary considerably [51].

• How should we organize the synthesized descriptions? Raw
video scene captions are usually repetitive and may be irrele-
vant to the main story of the video. Even human annotators
may need to watch a video several times to create concise
yet informative descriptions. Furthermore, for delivering
pleasant user experiences, it is preferable to optimize the
accuracy and fluency of audio descriptions.

To address the above challenges, we built Tiresias, a three-stage
end-to-end automatic AD generation system. First, to predict when
to insert an audio description, i.e. Insertion Time Prediction mod-
ule, we developed an audiovisual inconsistency detection model
which analyzes discrepancies between different modalities and dif-
ferent frames. Next, leveraging dense video captioning algorithms,
we implemented an AD generation module to determine what ac-
tions/subjects/activities to describe. Third, we propose a AD opti-
mization module to generate accurate and fluent output, which is

fed to a text-to-speech engine for final rendering. § 3 explains how
we extensively use state-of-the-art computer vision and natural
language processing techniques in our implementation.

To evaluate the quality of our automatic audio descriptions,
we conducted a user study with 20 sighted users and 12 blind
or visually-impaired (BVI) users. We selected 30 YouTube videos
covering different genres, including music, film, animals, sports, etc.
Our predicted insertion positions match very well with where users
felt uncertain. For example, we can detect the inconsistency be-
tween a drum-playing scene (visual) and sounds of people laughing
(audio), where both sighted and BVI users expressed that audio de-
scription should have been added to enhance clarity. More broadly,
the fully-automatic system Tiresias reduces confusion compared to
the raw audio input. Specifically, 61.01% of the sighted users and
86.11% of the BVI users found that videos with our generated audio
descriptions are less confusing than the raw audio.

Based on user interviews, we evaluated the performance of Tire-
sias with several quantitative metrics, summarized the subjective
feedback from the interviewees, and shared our recommendation
for future automatic AD generation systems and potential research
directions within the space. Overall, 70% of the blind users reported
that our automatic AD results are "somewhat helpful". Although we
observed that the final AD output usually contains some missing
events, blind users still prefer some descriptions to no information
at all. Moreover, we observed considerable variation in the amount
of content and level of detail each user wants; most existing audio
descriptions, even those manually generated and curated, only offer
a single version of the description. Hence, we recommend provid-
ing an interaction that allows users to select the amount of audio
description they want. Moreover, we hope that our work will not
only contribute to the design of audio description generation for
social and video streaming platforms but also improve navigation
skill training for blind children via multi-modal video games [47].

2 RELATEDWORK
This research is related to prior works on (1) online accessibility
for visual media, (2) audio-visual consistency, and (3) video descrip-
tion generation, especially for people with vision impairments. We
briefly review the literature in these domains.

2.1 Online Accessibility for Visual Media and
Audio Description

For static media webpages and documents, alternative text or alt
text is commonly used to add captions to images. Traditionally, alt
texts have to be manually curated by the authors with no automa-
tion assistance. Recently, Gleason et al. developed various tools to
help generate alt texts of images [22], memes [21], and GIFs [20].
Their efforts in making GIFs accessible is among the most relevant
projects and highlight the importance of accurate audio description
for moving pictures. While they focused on GIFs, we investigated
longer videos with audio content and built an automatic workflow
to generate and evaluate audio description.

Audio description, is “the art of turning what is seen into what
is heard; the visual is communicated through the human voice and
descriptive language” (2001)3. Access is increased through such
3https://acb.org/adp/
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audio description, which adds precise, concise verbal descriptions
of visual media-about people, objects, scenes, body language, facial
expressions, and colors [31]. Many researches have been conducted
to evaluate the benefits of audio description on different video types
(e.g., science programs [48], film [45], and live theater [31]), different
audiences (i.e. sighted users [40] and visually impaired users [35]),
and different description styles (e.g., cinematic language style [17],
standard and creative style [55]). However, as an emerging form of
inter-modal translation, the generation of audio description raises
many new questions, i.e. audio describing a video is not simply
a matter of substituting visual images with verbal descriptions,
but should establish the links within and across different modes
of expression (e.g., links between visual images and image-sound
links) [9]. Apart from the sheer amount and types of videos, another
difficulty is that the online videos often adopt a variety of editing
techniques. The effects carried by the edits need to be illustrated
by the audio descriptions to support the BVI users in the creation
of a coherent understanding of the video content [9]. Therefore, de-
scriptions for online videos are typically authored by professionals
manually rather than generated with automatic techniques.

Instead of generating audio descriptions from scratch, there have
been promising research projects exploring the alternatives. Salis-
bury et al. proposed a real-time crowd-sourcing experience which
brought human in the loop to compensate for the shortcomings of
existing AI algorithms [46]. Guinness et al. leveraged reverse image
search to collect similar images that have been annotated [23]. For
videos uploaded by users, except memes and viral videos, we argue
that the sheer amount and diversity of personal videos makes it
impractical to leverage crowd-sourcing, reusing existing videos,
or any human-in-the-loop process. For example, every minute 500
hours of videos are uploaded to YouTube4, with varying lengths,
topics, subjects, stories, etc. We believe a fully automatic AD gen-
eration tool can help blind and visually-impaired users to access
online videos broadly. Therefore, we aim to build an early proto-
type of such a tool and evaluate its pros and cons so as to share
recommendations for future development.

Videos that are accessible for people who are blind or visually-
impaired are scarce. For example, Netflix was criticized for not mak-
ing all the accessibility features available on its online streaming
platform [27]. Since then, Netflix has been progressively rolling out
captions and audio descriptions on streaming video [13]. Rohrbach
et al. introduced a dataset for movies with AD and benchmarked
video description methods in an evaluation [44]. Their work only
looked at movies with scripts and their dataset includes short snip-
pets of videos. In comparison, we focus on user-uploaded videos
that have no scripts and could be much shorter or longer in length
with varying recording quality.

2.2 Audio-Visual Consistency
Observing a tremendous amount of visual-audio combination ex-
amples, we learn the correlations between visual and audio uncon-
sciously [18]. To know a sound, or to understand a sonic event,
we have an urge to locate a sound source. That is why we may
turn around upon hearing a sound behind us to find out what we

4https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-
every-minute/

have heard, or to confirm what we imagine has taken place [10, 49].
Therefore, we experience listening to events rather than sounds [18].
For visually-impaired people, it is important to train their listening
skills to enhance vision-to-sound mapping early in their life, since
sound is a major source of information [8, 19]. Such training helps
them with general learning, understanding their surroundings, as
well as obtaining critical safety information needed for travel [15].

In computer vision, audio-visual related research explores al-
gorithms for achieving audiovisual understanding [4, 6, 24] akin
to training visually-impaired people to understand their environ-
ments from audio. Researchers investigate different techniques
along this direction, such as detecting audio-visual events [4], im-
proving human speech consistency [34, 57], and generating scene-
aware sound [25, 58]. Drawing inspiration from them, we developed
an audiovisual inconsistency detection algorithm based on the au-
dio and visual embeddings. The detected inconsistencies indicate
the timestamps for inserting AD results.

2.3 Video Description Generation
In computer vision, video description generation refers to the auto-
matic generation of natural language sentences that describe the
visual content of a video [3]. Similar to image captioning, it re-
quires not only recognizing salient objects, but also understanding
actions and interactions [26]. Research on dense video captioning,
such as C3D [53] and I3D [11], showed that multiple features can
improve video captioning models [37, 38, 54]. Generating a compre-
hensive description for videos that contain multi-events happening
simultaneously is an open problem.

The state-of-the-art methods tackle the problem of video de-
scription generation by dense video captioning, aiming to locate
all events in time and adding captions for each event [28, 56]. A
standard dense video captioning algorithm divides the problem
into two sub-tasks: event detection and caption generation. An
event proposal network finds a set of candidate proposals and a
captioning network generates a caption for each proposal inde-
pendently [29, 60]. While video description research is promising,
its focus is not on filling the audiovisual gap to create accessible
videos. By evaluating the existing algorithms, we want to identify
the shortcoming and hence future avenues for AD research.

We apply similarity-based modeling to optimize the output from
dense video captioning engines. Sentence similarity and perplexity
modeling lie at the core of many natural language processing ap-
plications [41]. Starting from word embeddings [7, 32, 59], recent
popular neural network methods evolved to use sentence-level em-
bedding for distance metrics [5, 30, 36]. Complementary aspects of
a sentence, e.g., syntax, length, and word order, proved to improve
the ability to measure semantic textual similarity [52]. Based on
the existing findings, we optimize the generated description in the
sentence level. In particular, to enhance user experiences of video
with description, several factors need to be considered in the opti-
mization process. For instance, the description should be relevant
to the video topic; it should not be redundant and confusing.

3 AUTOMATIC AD SYSTEM
Our automatic audio description (AD) system consists of three mod-
ules, i.e. insertion time prediction, audio description generation, and
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Input Video Insertion Time Prediction

Irrelevance Cost 
Diversity Cost
Perplexity Cost

AD Generation AD Optimization

Video clips without voice over

00:00:05 (Clip 1)
A women is standing next to a large painting.
......
00:01:21 (Clip 3)
A group of people is sitting in a room.
......

… …
Clip 1 Clip 3 Clip 9

Output ADs
Clip 1
A woman is standing net to a large painting.
A woman is seen speaking to the camera.
A woman is seen standing before a man.
A woman is standing behind a bar.
A woman is standing in a room.
......

Figure 2: Overview of our proposed audio description system, Tiresias. It consists of three major modules: Insertion Time
Prediction, Audio Description Generation, and Audio Description Optimization.

sentence-level audio description optimization, for making videos
accessible. We describe our system in the following.

3.1 Insertion Time Prediction
As demonstrated in [18], humans are able to perceive events and
environments based on sounds. For example, people can easily
identify a noisy street or a pleasant seaside from sounds. Inspired
by this, our system is designed to first segment the input video as
two kinds of clips, i.e. audio-visual consistent clips and inconsistent
clips. The inconsistent video clips will be fed into the description
generation module.

Keyframe Extraction. We preprocess the input video into clips
that do not have voice overs, since the final generated descriptions
cannot overlap with these clips in audio track, otherwise it would
be difficult to distinguish speech content and understanding the
video content [16]. For the rest video clips, we further segment
the clips using a robust keyframe extraction tool called Katna [1].
The keyframes are defined as the representative frames of a video
stream, which provide an accurate and compact summary of the
video content considering the changes in the scene setting, lighting,
and human actions. All frames between two consequent keyframes
constitute a video clip.

Audio-Visual Consistency. To determine whether a pair of a video
frame and the audio clip correspond to each other or not, we use
the proposed deep network [4] to train the two visual and audio
networks from scratch. The learning for both visual and audio
semantic information is performed in a completely unsupervised
manner by simply watching and listening to a large number of
unlabelled videos. The network structure consists of three distinct
parts: the visual and the audio sub-networks which respectively
extract visual and audio features, and the fusion network which
takes these features into account to produce the final decision
of consistency. This method achieves a consistency classification
accuracy of 78% on Flickr-SoundNet Dataset and of 74% on Kinetics-
Sounds Dataset. Please refer to [4] for more details. The inconsistent
video clips will be fed into our description generation module.

3.2 Audio Description Generation
To generate high-quality descriptions for all events of interest of a
video, the fine-grained video clips were fed into an attention-based
model [12], which consists of a sentence localizer and a caption
generator.

The sentence localizer provides a cross-attention multi-model
feature fusion framework, which models the correspondence be-
tween the video clip and the caption. The involved attention mech-
anism contains two sub-attention computations, i.e. the attention
between the final hidden state of the clip and the caption feature
at each time step, and the attention between the final hidden state
of the caption and the video features. For training, the video and
event descriptions are available. The video and one of its event de-
scriptions are fed into the localizer. A temporal segment prediction
is obtained, which is fed into the generator to perform captioning
on the frames soft clipped from each of the extracted video clips.

The dual network was trained on the ActivityNet Captions
dataset [28] that has been applied as the benchmark for dense
video captioning. This dataset contains 20,000 videos in total, cov-
ering a wide range of complex human activities. For each video, the
temporal segment and caption sentence of each human event is an-
notated. On average, there are 3.65 events annotated for each video,
resulting in a total of 100,000 events. We evaluated the description
generation model with 5,000 video clips randomly selected from
the ActivityNet Caption dataset and the YouCookII dataset. With
the evaluation metrics of BLEU and METEOR, i.e. evaluating the
quality of the generated text which has been machine-translated
(the higher the score, the closer to human judgment), we achieve
higher scores (9.56 for METEOR and 10.12 for BLEU) against other
methods [28]. Note that the scores range from [0, 1] but are scaled
by 100 for visualization, following standard practices.

3.3 Audio Description Optimization
Descriptions that are redundant, confusing, grammatically wrong,
or incompatible with the video topic have been shown to inter-
rupt one’s immersive video experience. The corresponding quality
standards were drafted by the Advanced Diagnostic Imaging Audio
Description Guidelines Committee in 2003 and serve as a useful
set of guidelines for video describers [2]. Since several descriptions
are generated for each video clip by the previous module, next we
optimize the results based on the audio description guidelines to
yield accurate and fluent descriptions as the final output.

To enable accurate description selection from multiple generated
results, we formulate the process as optimization with several costs,
considering relevancy to the video topic, diversity, and perplexity.

Formulation. We formulate our optimization problem on the
sentence level. Let 𝑆𝑖 (𝑛) = (𝑠1, 𝑠2, ..., 𝑠𝑛) denote the generated de-
scriptions for the 𝑖-th video clip. The final output descriptions 𝑆
for the whole video is achieved by minimizing the cost function:
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Ctotal (𝑆) =
𝑁∑
𝑖=1

(Ci (𝑆𝑖 ) +𝜆dCd (𝑆𝑖 ) +𝜆pCp (𝑆𝑖 )), where 𝑁 is the num-

ber of segmented video clips. Ci (·) is the irrelevance cost term that
penalizes the descriptions irrelevant to the video topic. Cd (·) is the
diversity cost term for evaluating the description content. Cp (·) is
the perplexity cost term that penalizes the confusing descriptions.
𝜆d and 𝜆p are the weights, which are empirically set as 0.4 and
0.2 by default, to balance the cost terms. We leverage pre-trained
sentence-level embeddings in our optimization task, which has
demonstrated good accuracy in diverse transfer tasks.

Irrelevance Cost and Diversity Cost. When considering the gen-
erated candidate descriptions 𝑆𝑖 for video clip 𝑖 , the irrelevance
cost term is considered for each description 𝑠 𝑗 independently from
others. We used Google’s TensorFlow Hub model, i.e. the Universal
Sentence Encoder, to measure the relevance of descriptions to the
video topic (determined by the video title). The higher the rele-
vance is, the lower the irrelevance cost Ci (·). The encoder produces
sentence-level embeddings for the texts, i.e. encodes the text into
high-dimensional vectors, which are approximately normalized.
Therefore, the semantic correlation of two texts can be trivially
computed as the inner product of the encoded vectors. We use the
same strategy to measure the diversity between two consecutive
descriptions. The higher the diversity, the lower the diversity cost
Cd (·) is. We aim to maximize the description diversity.

Perplexity Cost. To filter out uncommon expressions, linguistic
errors, and not fluent sentences in the generated results, we use
GPT [42] as a language model to assign a language modeling score
by measuring how well a probability model predicts a sample. The
score can also be regarded as the perplexity score of the sentence.
The higher the score is, the lower the perplexity cost Cp (·).

Optimization. We apply a dynamic programming method to effi-
ciently optimize the total cost function. Let ⟨𝑖, 𝑆𝑖 ⟩ denote the cur-
rent video clip 𝑖 and the corresponding generated descriptions. Let
Ctotal (𝑆𝑖 ) demote the optimal cost for this state (for video clip 𝑖).
When choosing the next description, the current state can transi-
tion to a state in the next video clip 𝑖 + 1. The next state would be
⟨𝑖 + 1, 𝑆𝑖+1⟩ where 𝑆𝑖+1 is the new generated descriptions for the
next video clip 𝑖 + 1. The optimal solution can be obtained by solv-
ing 𝑆∗ = argmin⟨𝑆𝑖 ⟩ Ctotal (𝑆) using dynamic programming and
back-tracking the descriptions generated for each video clip.

3.4 Implementation Details
We implemented our approach on an Intel Core i7-9700 machine
equipped with an NVIDIA GeForce RTX GPU with 24GB graph-
ics card memory. Our system, including Insertion Time Prediction,
Audio Description Generation, and Audio Description Optimization,
took about 45 seconds to process a two-minute video. After gener-
ating the optimized descriptions for the whole video, we applied
Google Cloud Text-to-Speech to convert them into speeches and
used FFmpeg to insert the speeches into the original video, which
took about 200 milliseconds for each description.

To validate the robustness, since Tiresias works in a fully auto-
matic manner, we ran it on 500 videos and shared it as an AutoAu-
dioDescription dataset. The videos were sampled from the Activi-
tyNet Captions Dataset [28]. Overall, it took about 420 hours for

our system to generate audio descriptions to all the 500 YouTube
videos totaling around 750 hours, which would cost about $150 if
we ran our system through a typical cloud service like AWS.

4 EVALUATION
With an IRB approval, we recruited 20 sighted participants and 12
blind or visually-impaired participants. The 20 sighted participants
(p01-p20) reported normal or corrected-to-normal vision, no color-
blindness, and normal hearing. These sighted participants were
equally split between men and women, and they averaged 32.10
years old (min = 19, max = 57). The 12 blind or visually-impaired
participants (P21-P32), as shown in Table 1, are diverse in terms
of gender, age, and occupation. These participants have a range of
visual impairments as well as varied video streaming platforms with
online videos. Four BVI participants (P21, P26, P29, and P31) did not
complete the study due to technical difficulties. Their responses are
included in the interviews, but not in the quantitative evaluation.
Please refer to supplementary materials for sighted participant
demographics.

4.1 Study Procedures
Due to COVID-19, we conducted all the interviews and studies
virtually via Zoom. We chose 30 videos from the ActivityNet Cap-
tions dataset covering 5 different video types, i.e. music, film, pets
and animals, vlog (further divided into people and activities, com-
edy, and DIY), and physical (further divided into sports, dancing,
and fitness). The length of each video ranges from 30 seconds to 3
minutes. Each video has two sets of corresponding data: (i) Video
Set, i.e. original video and the same video with automatic audio
descriptions, for sighted users to evaluate; and (ii) Audio Set, i.e.
the original audio track and the same audio with automatic audio
descriptions, for both sighted and blind users. The only difference
between the Video Set and the Audio Set is whether visual frames
are available.

We designed and implemented a program (illustrated in supple-
mentary materials). We ran our study in two passes. In particular,
for BVI participants in the first pass, we asked the participants
to watch/listen to the original input video/audio. We asked them
to raise their hand when they needed additional information; in
other words, when they felt that the video did not have sufficient
information to help them understand the scene. In the second pass,
we asked the participants to watch/listen to the same video/audio
plus our automatically-generated audio descriptions. Just like in
the first pass, the participants raised their hands for additional in-
formation that our AD output does not capture. In addition, we also
ask them to raise their hands and let us know if the generated AD is
confusing, redundant, or grammatically problematic. For the sighted
participants, we sent them the executable program and instructed
them to perform the same operations as BVI participants by clicking
different buttons, e.g., clicking “A” for Additional information, etc.

We randomly selected 3 samples from Video Set and Audio Set
and categorized the results into 3 categories.

• SV for the sighted participants who watched the Video Set
samples.

• SA for the sighted participants who listened to the Audio Set
samples.
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Table 1: Demographics of user study participants. "Vis. Exp." refers to the visual experience, including "CTB" (Congenital
Total Blindness), "CB-LC" (Congenital Blindness with some light/color perception), "ATB" (Acquired Total Blindness), "AB-
LC" (Acquired Blindness with some light/color perception), and "CLV" (Congenital Low-Vision).

ID Gender Age Occupation Vis. Exp. Video Platforms Video Types

P21 F 34 Unemployed ATB YouTube, Netflix Music, fitness, series
P22 M 75 Retired CB-LC YouTube, Netflix, TV Movie
P23 F 69 Retired CTB Netflix, Amazon Prime, Hulu Documentary, movie, sports
P24 M 29 Teacher CLV TV, Netflix Documentary, sports
P25 F 65 Manager CB-LC TV Movie
P26 M 51 Student CTB YouTube News, sports
P27 F 37 Office Assistant ATB Serotek Movie, TV shows
P28 F 16 Student CLV YouTube Education videos
P29 F 17 Student CLV YouTube, Netflix Cartoon
P30 F 60 Retired CLV YouTube,Amazon Prime, TV Movie, news, documentary
P31 M 59 Retired CLV YouTube, TV Movie, sports
P32 F 49 Retired AB-LC JW.org, YouTube, TV Drama

• BVI for the blind or visually-impaired participants who lis-
tened to the Audio Set samples. Based on the following pre-
study interviews, we choose the lowest common denomina-
tor to only show the samples from Audio Set to all visually
impaired participants:
– Similar to blind people, low-vision participants (P24, P28-
P31) have difficulties manipulating computers without
others’ accompany. Therefore, they usually used phones
(with a small screen) to listen to videos, as P31 stated, “The
screen reader on phone is easier to use than on the computer.”

– Our recruited adult low-vision participants (P24, P30, P31)
stated that they only listen to news, sports, and documen-
taries, which are fully described by the announcers. For
example, P30 stated, “If the videos come up like on a news
web page, they’re kind of embedded into the story and the
presenter would describe the content in detail.”

– Some low-vision participants (P24 and P28) pointed out
that they would watch a video on TV or a bigger computer
monitor if they want to learn something from the video.
However, they indeed need others’ help to get the details,
especially for students.

We included the Video Set for the sighted participants to inves-
tigate if there is a difference introduced by the videos. We asked
the BVI participants to communicate by raising their hands so
that they could bypass the difficulty of operating mobile phones or
computers.

4.2 Quantitative Results and Analysis
We analyzed the results from our user study guided by the following
research questions: Did the participants find the automatic AD
results helpful? If so, in which specific ways our automatic AD is
helpful for people who are blind or visually-impaired? On the other
hand, what are the shortcomings of our implementation? What are
the similarities and differences between the sighted and blind or
visually-impaired participants? Figure 3 and Figure 4 visualize the
aggregated statistics in SV, SA, and BVI categories. Next we discuss
4 observations from the charts.

Automatic audio descriptions may reduce the requests for addi-
tional information. In the first pass, we asked the participants to in-
dicate requests for additional information while watching/listening
to the original input. Then in the second pass, we asked the partici-
pants to do the same but updated the input to include our automatic
AD output. Figure 3(a) shows a significant drop among all 3 cohorts,
regardless of whether the participant was sighted or blind or if the
sighted participants saw the visual frame or not. In particular, with
our generated audio descriptions, the demand for additional descrip-
tions is less than 20% of that without our AD. As many participants
reported, “some insertion position marked before could be omitted
because I could exactly know what happened in the video through the
descriptions.” However, the familiarity of the video content after
the first pass would implicitly affect the users’ perception of the
video content in the second pass, i.e. users may have a general
understanding of the video content based on some sound details in
the first pass, while they may pay more attention to other aspects
of video content in the second pass that they did not think deeply in
the first pass. For example, as P24 raised his hand twice and stated
in the first pass that “It does like that a shopping cart seems to be
rolling on through the beginning of the video. I want to know whether
the people near a grocery store.” After the second pass, P24 changed
his initial questions and raised his hand once, “I know people will
take the shopping cart out of the parking lot or out of the store. So I
want to know either there’s a random shopping cart, or they’re looking
at a store.”

65.50% of the requests from the blind participants overlapped with
our automatic AD.. When a participant indicated requests for ad-
ditional information, we also recorded the timestamp. In our au-
tomatically generated AD, we also extracted the insertion times.
We show further that the insertion time differences between the
participants’ indications and our results are significant, as shown in
Fig. 3(b). We consider the results within a 2 seconds time difference
as overlapping, as users stated that there might be a slight reac-
tion delay. When the time difference is between 2-4 seconds, we
consider it as a partial overlapping. If the time difference is more
than 4 seconds, we regard it as no overlapping. Under this metric,



Toward Automatic Audio Description Generation for Accessible Videos CHI ’21, May 8–13, 2021, Yokohama, Japan

SV SA BVI
(a) Participants AD Request Quantity

300

250

100

0

50

150

200

Data w/ ADData w/o ADNo. of Requests

(b) Overlap of Our AD Insertion Time and 
Participants Request Time 

Overlapping Some Overlapping No Overlapping

44.10%

37.10%

18.80%
28.02% 31.44%

40.54%

21.83%

65.50%
12.66%

SV SA BVI

Figure 3: Quantitative results of AD insertion request. (a) shows the sharp drop in requests with our automatic audio descrip-
tions in all three SV, SA, and BVI groups. (b) shows the percentage of AD insertion position overlap between our results and
users’ requests, indicating the effectiveness of our insertion time prediction module.
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Figure 4: (a) The percentage of reported AD confusion
among SV, SA, and BVI groups. We see a relatively consis-
tent result from SA and BVI, which both only have access
to the audio stream. The SV group which also has access
to the visual stream shows a significantly higher confusion
rate.We attribute this to an inaccurate depiction of visual ac-
tivities. (b) The percentage of reported AD redundancy and
grammar errors. The BVI group reported significantly lower
numbers than the sighted group. From interviews, we real-
izemost blind viewers do notmind hearing repeated descrip-
tions, whereas sighted viewers behave the opposite way.

the overlapping of the sighted participants’ results achieved 44.10%
(SV) and 31.33% (SA). The overlapping is even higher at 65.50% for
the BVI category. In detail, for low-vision participants and other
visually impaired participants, the results of overlapping achieved
53.48% and 68.27% respectively, which both higher than the SV and
SA overlapping results.

In order to further explore the impact of different reaction de-
lays (i.e. the interval setting) on the analysis results, we analyzed
the results with different intervals. Compared with the result of
2s-interval, the result of 1s-interval or >=3s-interval has substantial
fluctuations. For example, the results “no overlapping” of SA partici-
pants would greatly increase from 31.44% to 88.50% with 1s-interval,
or reduce from 31.44% to 12.39% with 3s-interval. Therefore, we
mainly show the analysis results with 2 second intervals. Overall,
our AD insertions that have good or partial overlaps are above
70% for SA and SV; and 79% insertion times are close to the BVI
participants’ demands.

The generated AD might not convey an accurate depiction of the
visual activities. Figure 4(a) shows that the SV group (sighted users

who watched the Video Set) indicated most confusion about the
descriptions. Almost half of the results (46.72%) were labeled as
confusing. On SA and BVI, the confusion percentage is much lower
at 25.56% and 24.62% (25.58% for low-vision participants and 24.19%
for other visually impaired participants), respectively. We won-
dered what had caused the much higher confusion rate in the SV
group. Some SV participants reported they had received both visual
and auditory information, so they could easily see and hear the
confusing audio descriptions. For example, a barrel was incorrectly
described as a dog. On the other hand, when the SA or BVI par-
ticipants encountered similar scenarios, they were usually more
“curious” than confused about the description since they were much
less confident of what was actually happening in the video.

Blind participants are generally okay with redundant and repeated
AD, while sighted participants complained about excessive redun-
dancy. There is a stark contrast between the reported redundancy
of the sighted participants and that of the BVI participants. As
shown in Figure 4(b), around 20% of the descriptions were labeled
by the sighted participants as redundant results (24.00% for the
Video Set and 18.46% for the Audio Set), while only 1.01% by the
BVI participants. When we asked the BVI participants about the
1.01%, we found that those were related to grammar inconsistency
from the AD generation NLP model rather than redundancy, fur-
ther reducing the 1.01% to zero. This 20% versus 0% difference is
intriguing. Take a dancing video as an example. A sighted partici-
pant noted that she would only like to know the special movements
of the dancers rather than the repeated descriptions saying ‘they
are dancing in a circle’. She said that if the dancers were doing the
same movement, there was no need to describe it. However, almost
all BVI participants (both low-vision and other visually impaired
participants) shared the opposite opinion by giving a comment like
“I didn’t mind the redundant descriptions because I could picture what
the descriptions were saying.”

4.3 Post-Study Interview Findings
We interviewed each participant with open-ended questions to
further analyze the results. We list the questions in the Appendix.
We group our findings into 3 topics.

What is missing in our audio descriptions? Overall, both sighted
and BVI participants stated that whenever they could not get access
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Table 2: Results of cross-type analysis, where “✓” spec-
ifies the type of description content wanted. (M=Music,
AN=animals, F=Film, AC=Activity, C=Comedy, D=DIY,
S=Sports, D=Dancing, F=Fitness)

Video Content M AN F AC C D S D F

Event/Scene
People Present ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Text ✓ ✓ ✓ ✓ ✓ ✓
Interaction ✓ ✓ ✓ ✓ ✓ ✓ ✓
Place ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Weather ✓ ✓ ✓ ✓

People
Quantity ✓ ✓ ✓ ✓ ✓ ✓
Position ✓ ✓ ✓ ✓
Props ✓ ✓ ✓ ✓ ✓
Action/Reaction ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Relationship ✓ ✓ ✓ ✓ ✓
Gender ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Race ✓ ✓ ✓ ✓
Name ✓ ✓ ✓ ✓ ✓
Identity/Role ✓ ✓ ✓ ✓ ✓
Facial Expression ✓ ✓ ✓ ✓ ✓ ✓ ✓
Body Shape/Size ✓ ✓ ✓ ✓ ✓ ✓
Hair Style/Color ✓ ✓
Eye Color ✓
Unique Features ✓ ✓ ✓ ✓ ✓

Other Factors
Background Info ✓ ✓ ✓ ✓
Storytelling/Logical ✓ ✓ ✓ ✓ ✓ ✓
Camera Movement ✓ ✓

to visual content, they wanted to know everything that happened
in the video and a simple yet comprehensive description of the
video content. Many participants made a comment like "I want
to know more about the scene. Was it a room or was it outside?
How many people were there? What were they doing? Were they
teenagers or adults? What were they wearing? Were they next to each
other? Whenever such a description would help paint the picture of
what the person was doing, that would help." For BVI participants,
they wanted to get more detailed information about the scene or
background, as P21 noted, "Because the people were climbing the
mountain, I would like to know more about the background, like the
roads, trees, etc." However, due to the lack of paired static audio-
visual objects in the training dataset and the temporal features of
image-audio data compared to video-audio data, in the audio-visual
consistency model, our Insertion Time Prediction module may miss
some necessary insertion positions.

Both sighted and BVI participants stated that they wanted to
get deeper interpretations and subtle relationships beyond the au-
diovisual content. For example, the reason for people’s reaction,
as P22 said, "I know somebody was playing drums. I heard people
laughing, but I don’t know why the people were laughing. The audio
descriptions should be able to make me laugh on it at the same time
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Figure 5: Audio description experience of participants.

as sighted people." This is a challenge in existing video dense cap-
tioning research. Since the model was trained on the dataset with
activity annotations only, it failed to explain the relationships in a
scene.

Analyzing the feedback with respect to description preferences,
we observed that BVI people generally have low engagement with
videos uploaded to social media platforms. In some instances, the
low level of engagement was related to their familiarity with dif-
ferent video types. For instance, for music videos, due to different
levels of music theory understanding, some participants desired
to know more about the background of a piece of music, as P11
and P24 expressed, “ who wrote the music or who composed it, why
did the author or composer make the music?”, while others were
more concerned about the instruments. For sports video, low en-
gagement stemmed not only from inadequate descriptions but also
from different user preferences. P21 expressed that “I just care who
won the game”, while P23 and P36 stated that “I would like to know
the details of the match. If someone did a move, like against another
person, I would like to know his corresponding strategies.”

We also observed considerable diversity across sources in terms
of participants’ desires for the amount of content and the level of
detail they want in audio descriptions. We offer a nuanced view of
different content needs with different source video types in Table 2.
For each type, we specify all kinds of content from a lengthy list of
options that at least one of our participants thought was important
to describe. We group these findings around three key themes
that are commonly the central focuses of a video composition:
event/scene, people, and other objects. Notably, for some video
types, the amount of content desired in audio descriptions was
greater than that of other video types. For instance, we noted that
participants want to have the largest amount of content available
to them for films, activity-related videos, whereas they requested a
smaller amount of description content for animal and DIY videos.

We further observed that there are other factors that may impact
the amount of content and/or the level of detail that is included
in a description. For instance, we noted that the level of vision
the participants have influences the amount of content they want.
One sighted participant (P08) said “I will ignore objects that are not
related to the current event”, while the BVI participants (P27 and P30)
stated, “I want to get more details, like how the ball was transferred
from one player to another. ” P26 was more special, stating that he
wanted to knowmore details of the players’ clothes in sports videos,
i.e. “I want to know the color of the players’ cloth, the brand names
of their shoes, as well as the Polo.” Moreover, participants showed
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different opinions towards the description density. P30 noted that
“The description should describe what happened when people were not
talking, because maybe there was something flashing on the screen
that somebody could just see their silence.” In contrast, we heard
from P32 that the audio description should not take over the video
content but “should be simple and be said with a soft voice”.

Why is our audio description not very helpful? After the par-
ticipants watched/listened to the video with our generated audio
descriptions, we asked them about their overall experiences. Specifi-
cally, we asked them to rate how well our audio descriptions helped
them understand the video content, by giving a rating of “Not Help-
ful”, “Somewhat Helpful”, or “Very Helpful”. As shown in Fig. 5,
most sighted participants who watched the Video Set claimed that
“It is easy to distinguish the wrong recognition result in the description”,
resulting in a high percentage of “Not Helpful” (54.17%) following
with 41.67% of “Somewhat Helpful”. For the 4.17% of responses
with the rating “Very Helpful”, the participants gave comments like
“The description describes the event precisely.”

23.81% of sighted participants and 13.33% of BVI participants who
listened to the Audio Set rated the results as "Not Helpful". Based
on their feedback, we believe there are three main reasons for their
ratings, all of which result from the shortcomings of existing video
understanding methods:

• Audio descriptions do not match the video topic or title. It is un-
common for online videos to show only human activities.
Many videos are remixed with a landscape video montage,
food sharing, or shopping. Such videos are sometimes titled
with irrelevant and concise words, making it difficult to de-
termine the relevance between the description and the video
content at the sentence level. For instance, P29, a low-vision
participant, noted, “There were a lot of people sitting in a bar
I guess because the description included the words piano and
beer, but the video title was about washing the car. I don’t
really get that anybody was actually washing the car in the
video.”

• Audio descriptions do not match the sound. For instance, the
description does not match the character’s attributes in the
video, e.g., gender, as both sighted and BVI participants noted,
“The description described a woman who was making a sand-
wich but I actually heard a man’s voice.”

• Audio descriptions are not logical. For instance, P23 and P28
noted, “The description said they are climbing up on the side-
walk and this does not make any sense to me. I think a sidewalk
is something you just walk on, not climb.” Similarly, P32 stated,
“I’m not confused about climbing on the sidewalk. I would like
to know why the sidewalk was difficult to climb? What were
they using to climb the sidewalk?”

A larger percentage of BVI participants, i.e. 76.67% (71.43% for
low-vision participants and 77.42% for others, versus 61.90% for
sighted participants) rated the descriptions as "Somewhat Helpful".
This is probably because the BVI participants were used to changing
their initial thoughts based on the descriptions. As a low-vision
participant (P24) stated that “I thought it was one badminton court.
But now I think there were multiple courts, like multiple games going
on at once. Because I heard the description saying the words of tennis

and horse.” and a blind participant (P32) expressed “I thought the
man was climbing a mountain. I’m thinking the man is climbing up
on a car because the description mentioned the car.” In comparison,
the sighted participants usually doubted the content, thus more
likely giving the "Not Helpful" rating.

Although most of the audio descriptions were rated as “Some-
what Helpful”, we observed a variety of concerns on whether an
audio description of an event lacked useful information. Overall,
almost every participant stated that the provided audio descrip-
tions did not fully meet their expectations, i.e. , they did not get all
the information they wanted as shown in Table 2. In general, the
description only described the activities that occurred in the video,
but lacked more detailed information about the scene and people,
for instance, scene attributes (weather, etc.) and personal attributes
(name, gender, race, facial expression, etc.), which were stated as
important by both the sighted and BVI participants. Therefore, the
results rated as “Very Helpful” represent a small portion for both
the sighted and BVI participants, 14.29% and 16, 57%, respectively.

How do our automatic AD results compare with a manual AD from
Netflix? We selected 5 Netflix video clips5 with audio description
and conducted a smaller-scale study following the same procedure
described in § 4.1. To the best of our knowledge, the audio descrip-
tions from Netflix were manually created. The quantity of descrip-
tions is 1.5 times of what the users requested. The overlaps between
participants’ requests and manual results in terms of insertion time
are 66.67% for SV, 70.00% for SA, and 88.89% for the BVI partici-
pants, noticeably higher than those of our automatic algorithm at
44.10% for SV, 31.44% for SA, and 65.50% for the BVI participants.
Regarding the description quality, very few (only two) descriptions
are thought to be confusing. As P23 stated, “This description is good
but is ahead of the action.”. Such issues can be explained by the
intention of preventing the description from colliding with the
background sound in the video. Moreover, the manually generated
descriptions rarely have redundant descriptions or grammar errors,
thus no participants reported such problems.

Our findings underscore the types of description content that
may be desired universally across different video types (Table 2). For
instance, our participants consistentlywanted to learn about actions
cross all video types. This aligns with the content provided by
the manual generated description. Almost every participant stated
that they enjoyed the video with such descriptions and found that
the video content was more accessible. Therefore, extending prior
findings, our work also reveals the consistency between the BVI
participants’ expectations and the detailed information provided
by manual generation.

5 RECOMMENDATION FOR
NEXT-GENERATION AD SERVICES

Participants in our user study expressed that our system offered
more video types compared to what they typically watch online,
which was limited to movies and other curated content. Our find-
ings offer convincing evidence that existing video understanding
research and audio description implementations are inadequate to
address the diverse demands from BVI viewers. Now we discuss

5Project Power, Extraction, Step Sisters, Rotten-The Avocado War, The Last Dance
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recommendations and future directions for better audio description
(AD) generation and interaction model.

We need a more context-aware prediction model to decide when to
insert an audio description. Currently, we use the audiovisual incon-
sistency to predict if a visual event is inaudible and it works in some
simple cases. However, we find that consistent audiovisual events
may also require descriptions sometimes so that users can further
understand the video content. For example, as P22 stated, “I hear a
dog is barking but I don’t know why, is the dog afraid of the person
or is the dog just playing?” In this example, the auditory and visual
data streams are consistent, yet the viewer still wanted additional
information on the broader context. This is relevant to the training
algorithms and the corresponding dataset, which were designed
on the objective factors rather than a deep understanding of visual
content. Alternatively, descriptions of reaction reasoning could be
used to redesign the evaluation metrics, when authoring audio de-
scriptions that are used for training AI models, and to support the
inclusion of relevant details depending on video context.

We need smarter video understanding beyond just activity recog-
nition. For the generation of audio descriptions, we used dense
video captioning, which was trained on activity-focused datasets.
A consequence was that our automatic descriptions only covered a
small set of those listed in Table 2. Out of all the entries in the first
column, our activity-focused model performed well on “Interaction”
and “Action/Reaction” and ignored most other entries. For example,
rarely did the descriptions include weather or place. The fine de-
tails of the people appearing in the scene were also missing in the
video captions, such as gender, name, facial expression, body size,
etc. A better AD system would benefit from a more robust video
understanding module that can correctly predict all the aspects that
viewers typically care about.

We need interactive levels of details for audio descriptions. Audio
descriptions have been defined as a static track that one makes a
binary choice, enable or disable. We envision a next-generation AD
system with multiple levels of details. This has several implications.

(1) Viewers can fluently switch the level of audio description
they desired. In most verbose level, probably it has all the
fine details of everything on the screen, which might be
overwhelming for some blind viewers. Therefore, they can
fine-tune the level of details they want and find the perfect
length for their consumption and engagement with the video.

(2) We will need an algorithm to prioritize all the descriptions
and rank them accordingly. This is impossible without a
good semantic understanding of the audiovisual events and
the relationships among all the subjects.

(3) Audio descriptions, like all accessibility features, benefit
many users. For example, a sighted user might be using
a smartphone while listening to a video playing on TV. In
this case, a minimal level of audio descriptions can notify the
viewer about scene transitions or other significant updates.

We need more accurate sentence-level scene descriptions. We find
that some output sentences appeared unreasonable and illogical,
which was caused by inaccurate sentence-level description. For
instance, P23 stated that “If a person is playing the harmonica, how

can he smile to the camera?”. When we review this footage, we
realize that the musician was indeed playing harmonica and the
smiling came from amisclassification. In another instance, the audio
descriptions outputted “He uses a lawn to cut the leaves”, which is
against common sense.We believe there is room for improvement in
scene understanding, natural language processing, and in particular,
generating accurate and contextual sentence-level descriptions.

6 CONCLUSION
The lack of accessible videos on social media platforms and video
streaming platforms is a major barrier for participation by people
with visual impairments. Our automatic audio description genera-
tor attempts to integrate promising methods for generating audio
descriptions into one tool that users can use for different types
of video. We conducted user studies with both sighted and blind
participants and analyzed the feedback on the automatically gen-
erated audio descriptions. With our generated audio descriptions,
the demand for additional descriptions reduced to less than 20% of
the original input. More than 85% of BVI participants reported our
system was at least "somewhat helpful" to their video experience.
Despite the promising statistics, we also see that there is a big gap
between the automatic results and the manually generated AD by
Netflix. We further discussed several recommendations on how we
should improve our automatic workflow. In particular, we believe
the next-generation audio description would have multiple levels
of details and would react to the viewer’s interactive requests for
more or fewer descriptions. In the interviews, the BVI participants
repeatedly expressed that inaccessibility was their primary concern
and they often had to find workarounds for videos without audio
descriptions, e.g., asking a friend or family, which affected their in-
dependence. Making all user-generated online videos accessible is a
challenging and important long-term goal. Our work described the
pros and cons of existing tools and sheds light on future endeavors.

Limitations. Due to COVID-19, we conducted our studies re-
motely via Zoom. In our pre-interview questionnaire, most of our
12 participants preferred Zoom’s mobile app (with small screen
size) or phone dial-in with no visuals at all, over Zoom’s desktop
app (with larger screen size). To accommodate their requests and
offer the same calibrated experience, we chose the lowest common
denominator to only show the audio sets to all participants with
visual impairments, which is a limitation that the participants have
low visions could be tested on the Video Set data by using their
residual vision. It would be helpful to recruit more low-vision par-
ticipants who usually watch videos and conduct experiments to
explore the differences of accessing videos between them and blind
people.

We conduct the study in a two-pass manner to explore whether
the generated audio descriptions help participants to access the
video content. However, the familiarity of the video content after
the first pass would implicitly affect the participants’ perception
of the video content in the second pass, e.g., they may pay more
attention to other aspects of the video content. We are interested in
designing a more comprehensive process, for example, recruiting
more participants and separating the quantitative evaluations and
subjective interviews.
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A PRE-STUDY INTERVIEW QUESTION
1. Demographics information:

– Age
– Gender
– Occupation
– Level of vision

2. What platforms do you use to access videos?
3. What types of video do you usually watch?
4. What is your experience of video added with audio descrip-

tions?
5. What are the major barriers for accessing the videos?

B DURING-STUDY INTERVIEW QUESTION
1. After watching/listening to the original video/audio,

– based on what saw/heard, could you describe the video
content?

– for what reason did you think the video currently needs
to be added with audio descriptions?

– what is your expectation for the audio description? What
information do you want to get from the descriptions?

2. After watching/listening to the video with audio descrip-
tions,
– for each description, did you think the descriptions are
confusing?

– for each description, did you think the descriptions are
redundant or have grammar errors?

– what was your experience watching/listening the video
added with audio descriptions? Did you think the descrip-
tions help you understand with the video content?

– what else information should the description provide?
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