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Abstract

We are interested in a general alpha matting approach

for the simultaneous extraction of multiple image layers;

each layer may have disjoint segments for material matting

not limited to foreground mattes typical of natural image

matting. The estimated alphas also satisfy the summation

constraint. Our approach does not assume the local color-

line model, does not need sophisticated sampling strategies,

and generalizes well to any color or feature space in any

dimensions. Our matting technique, aptly called KNN mat-

ting, capitalizes on the nonlocal principle by usingK near-
est neighbors (KNN) in matching nonlocal neighborhoods,

and contributes a simple and fast algorithm giving compet-

itive results with sparse user markups. KNN matting has

a closed-form solution that can leverage on the precondi-

tioned conjugate gradient method to produce an efficient

implementation. Experimental evaluation on benchmark

datasets indicates that our matting results are comparable

to or of higher quality than state of the art methods.

1. Introduction

Alpha matting refers to the problem of decomposing an

image into two layers, called foreground and background,

which is a convex combination under the image composit-

ing equation:

I = αF + (1 − α)B (1)

where I is the given pixel color, F is the unknown fore-

ground layer, B is the unknown background layer, and α is

the unknown alpha matte. This compositing equation takes

a general form when there are n ≥ 2 layers:

I =

n∑

i=1

αiFi,
∑n

i=1 αi = 1. (2)

We are interested in solving the general alpha matting prob-

lem for extracting multiple image layers simultaneously

with sparse user markups, where such markups may fail
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Figure 1. Using the sparse click inputs same as in nonlocal mat-

ting [11], KNN matting produces better results. Top row: clearer

and cleaner boundary; middle: more details preserved for hairs as

well as the red fuzzy object; bottom: furs are more clearly sepa-

rated from background. Figure best viewed in electronic version.

approaches requiring reliable color samples to work. Re-

fer to Figures 1 and 2. While the output can be fore-

ground/background layers exhibiting various degrees of

spatial coherence as in natural image matting on single RGB

images, the extracted layers with fractional alpha bound-

aries can also be disjoint, as those obtained in material mat-

ting from multi-channel images that capture spatially vary-

ing bidirectional distribution function (SVBRDF).

Inspired by nonlocal matting [11], and sharing the math-

ematical properties of nonlocal denoising [3], our approach

capitalizes on K nearest neighbors (KNN) searching in the

feature space for matching, and uses an improved match-

ing metric to achieve good results with a simpler algo-

rithm than [11]. We do not assume the local 4D color-line

model [13, 14] widely adopted by subsequent matting ap-

proaches, thus our approach generalizes well in any color

space (e.g., HSV) in any dimensions (e.g., six-dimensional

SVBRDF). It does not require a large kernel to collect good

samples [9, 11] in defining the Laplacian, nor does it require

good foreground and background sample pairs [20, 8, 6]

(which need user markups more than a few clicks, much less



input clicks gold foil 1 gold foil 2 silver foil blue paper white paper

Figure 2. KNN matting on material matting using the sg dataset. Original images at top; bottom shows sparse user input (5 clicks; one per

layer) and the five layers automatically extracted. Our result distinguishes the two different gold foil layers despite their subtle difference

in materials (where they were combined in [10]). Figure best viewed in electronic version.

that foreground and background are unknown themselves),

and yet our approach is not at odds with these sampling

approaches when regarded as postprocessing for alpha re-

finement akin to [8]. Our matting technique, called KNN

matting still enjoys a closed-form solution that can harness

the preconditioned conjugate gradient method (PCG) [2],

and runs in order of a few seconds for high-resolution im-

ages in natural image matting after accepting very sparse

user markups: our unoptimized Matlab solver runs in 30–42

seconds on an old laptop with AMD Turion X2 Ultra Dual-

core Mobile ZM-80 2.1 GHz and 3G memory for images of

sizes 800 × 600 available at the alpha matting evaluation

website [1]. Experimental evaluation on this benchmark

datasets indicates that our matting approach is competitive

in terms of speed and quality of results.

2. Related Work

Natural Image Matting For a thorough survey on mat-

ting see [21]; here we cite the works that are closely related

to ours. The matting problem is severely underconstrained

with more unknowns than equations to solve, so user in-

teraction is needed to resolve ambiguities and constrain

the solution. Spatial proximity taking the form of user-

supplied trimaps or strokes was employed in [4, 19], which

causes significant errors when the labels are distant, and be-

comes impractical for matting materials with SVBRDF [12]

(e.g. inhomogeneous coating by spray painting). For im-

ages with piecewise smooth regions, spatial connectivity

in small image windows was used in defining the matting

Laplacian [13] for foreground extraction and later in [14]

for multiple layer extraction; good results are guaranteed

when the linear 4D color-line model within a local window

holds. Else, user needs to carefully mark up relevant colors

in textured regions which are often nonlocal to one another.

The closed-form solution for multiple layer extraction was

analyzed in [18] where the summation and positivity con-

straints were investigated. The Laplacian construction and

line model assumption from [13, 14] were still adopted.

The nonlocal principle has received a lot of attention for

its excellent results in image and movie denoising [3]. Two

recent CVPR contributions on natural image matting [11, 8]

have tapped into sampling nonlocal neighborhoods. Re-

duced user input can be achieved by accurate clustering

of foreground and background, where ideally the user only

need to constrain a single pixel in each cluster for comput-

ing the optimal mattes. Thus, we prefer good clustering

to good sampling of reliable foreground-background pairs

for the following reasons: sampling techniques will fail in

very sparse inputs that can otherwise generate good results

in KNN matting; they do not generalize well to n > 2 layers

due to the potentially prohibitive joint search space when

denser input is used; adopting various modeling or sampling

strategies usually leads to more complicated implementa-

tion (e.g. use of randomized patchmatch in [8], ray shooting

in [6], PSF estimation in [17]), resulting in more parameter

setting or requiring more careful markups/trimaps. In con-

trast, KNN matting requires only one non-critical parameter

K .

The other recent CVPR contribution consists of corre-

spondence search based on a cost function derived from

the compositing equation [8]. Noting that relevant color

sampling improves performance [20, 6], this approach sam-

ples and matches in a randomized manner relevant nonlocal

neighbors in a joint foreground-background space which,

as mentioned, can become prohibitively large if it is gen-

eralized to handle multiple layers. Earlier, a fast matting

method (up to 20× compared with [13]) was proposed in [9]

that uses large kernels for achieving high quality results.

Since the same local color-line model and the same Lapla-

cian construction in [13, 14] were adopted, unsatisfactory

results are unavoidable where large windows were used and

the model assumption fails. So a separate KD-tree segmen-

tation step was used to make the kernel size adaptive to the

trimap.

Material Matting Much work has been done on BRDF

decomposition aiming at reducing the dimensionality of a

SVBRDF which is six-dimensional in its general form. De-

compositions returned by principal component analysis and

independent component analysis and its extensions do not

in general correspond to different materials and thus are not

conducive to high-level editing. Factorization approaches
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Figure 3. KNN and nonlocal affinities comparison given the same

pixel (marked red). Nonlocal matting uses a spatial window cen-

tered at the given pixel for sampling nonlocal neighborhoods (ra-

dius = 9 in [11]). KNN matting collects more matching neighbor-

hood globally rather than within an image window, while spending

significantly less computation time (K = 81 here).

such as homomorphic factorization [15] and matrix factor-

ization [5] decompose a BRDF into smaller parts, but such

decompositions also do not promise that individual seg-

ments correspond to single materials. Soft segmentation is

required when different materials blend together. Blending

weights are available in [10] where a SVBRDF was decom-

posed into specular and diffuse basis components which are

homogeneous as previously done in [7]. In [12], a SVBRDF

was separated into simpler components with opacity maps.

The probabilistic formulation takes into consideration local

and texture variations in their two-layer separation, and was

applied successively rather than simultaneously to extract

multiple material layers so accumulation errors can be re-

sulted.

3. Nonlocal Principle for Alpha Matting

Akin to nonlocal matting [11] our KNN matting capital-

izes on the nonlocal principle [3] in constructing affinities

so that good graph clusters are obtained for respective lay-

ers. Consequently sparse input is sufficient. It was also

noted in [11] that the matting Laplacian proposed in [13] in

many cases is not conducive to good clustering especially

when the local color-line model assumption fails, which is

manifested into small and localized clusters. These clusters

are combined into larger ones through a nonlinear optimiza-

tion scheme in [14] biased toward binary-valued alphas.
The working assumption of the nonlocal principle [3] is

that a denoised pixel i is a weighted sum of the pixels with
similar appearance with the weights given by a kernel func-
tion k(i, j). Recall in [11] the followings:

E[X(i)] ≈
X

j

X(j)k(i, j)
1

Di

, (3)

k(i, j) = exp(−
1

h2

1

‖X(i) − X(j)‖2

g −
1

h2

2

d
2

ij) (4)

Di =
X

j

k(i, j). (5)

where X(i) is a feature vector computed using the informa-

tion at/around pixel i, and dij is the pixel distance between

pixels i and j, ‖·‖g is a norm weighted by a center-weighted

Gaussian, h1 and h2 are some constants found empirically.

Figure 4. Typical nonlocal affinities matrix A in KNN matting

(left, with K = 10) which is not as strongly diagonal as its coun-

terpart from nonlocal matting (right, with radius = 3). The KNN

matrix is still sparse.

By analogy of (3), the expected value of alpha matte:

E[αi] ≈
∑

j

αjk(i, j)
1

Di

or Diαi ≈ k(i, ·)T
α (6)

where α is the vector of all α values over the input image.

As described in [11]

• the nonlocal principle applies to α as in (6);

• the conditional distribution α given X is E[αi|X(i) =
X(j)] = αj , that is, pixels having the same appearance

are expected to share the same alpha value.

The nonlocal principle of alpha matting basically replaces

the local color-line assumption of [13, 14] applied in a local

window which, although widely adopted, can be easily vio-

lated in practice when large kernels are used (such as [9]).

Following the derivation Dα ≈ Aα, where A =
[k(i, j)] is an N × N affinity matrix and D = diag(Di)
is an N × N diagonal matrix, where N is the total number

of pixels. Thus, (D − A)α ≈ 0 or α
T Lcα ≈ 0 where

Lc = (D−A)T (D−A) is called the clustering Laplacian.

This basically solves the quadratic minimization problem

minα

∑
Aij(αi − αj)

2.

In nonlocal matting the extraction Laplacian (whose

derivation is more involved) rather than the above simpler

clustering Laplacian was used in tandem with user-supplied

input for alpha matting. While it was shown for cluster-

ing Laplacian in [11] sparse input suffices for good results,

the estimated alphas along edges are not accurate due to

the use of spatial patches in computing affinities A. More-

over, the implementation in [11] requires a sufficiently large

kernel for collecting and matching nonlocal neighborhoods,

so specialized implementation considerations are needed to

make it practical (c.f. a nice proof in fast matting [9]). The

choice of empirical parameters h1 and h2 also affect results

quality.

4. KNN Matting

In the following we describe and analyze our technical

contributions of KNN matting which does not rely on the

local color-line model, does not apply regularization, and

does not have the issue of kernel size. They look straightfor-

ward at first glance (with the corresponding implementation

definitely straightforward); our analysis and experimental
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Figure 5. KNN matting can operate in any color space simply by

changing the definition of feature vector in (7). Here shows the

significant improvement in the result of troll using the HSV space

on a coarse trimap. Our result is ranked top at the time of writing

(followed by shared matting [6] also shown here). The hairs and

the bridge are dark with close color values in the RGB space: a

hair pixel has RGB (20, 31, 33) and a bridge pixel (40, 30, 33) in

255 scale, whereas hue of the hair is 126◦ and that of bridge is

15◦.

results on the other hand show that our approach provides a

simple, fast and better solution than nonlocal matting [11]

with generalization to multiple layers extraction. Our un-

optimized Matlab implementation runs in a few seconds on

800 × 600 examples available at the alpha matting evalu-

ation website [1] and our results were ranked high in [1]

among the state of the arts in natural image matting. In most

cases only one click is needed for extracting each material

layer from SVBRDF data [10] in material matting.

4.1. Computing A using KNN

ComputingA in KNN matting involves collecting nonlo-

cal neighborhoods j of a pixel i before their feature vectors

X(·)s are matched using k(i, j).

Rather than using a large kernel as in fast matting and

nonlocal matting operating in the spatial image domain,

given a pixel i, we implement the nonlocal principle by

computing K nearest neighbors (KNN) in the feature space.

Our implementation was made easy by using FLANN [16],

which proves to be very efficient in practice, running in or-

der of a few seconds for an 800 × 600 image in natural im-

age matting. We notice in nonlocal matting [11] special im-

plementation considerations and restrictions were needed to

cope with computation load with large kernels. Since kernel

size is not an issue in this paper due to efficient KNN search,

the running time for computing one row of A is O(Kq)
where O(q) is the per-query time in FLANN. Typical val-

ues of K range from only 3 (for material matting) to 15 (for

natural image matting). They are not critical parameters and

kept constant in our experiments.

Figure 3 compares the nonlocal neighborhoods com-

puted using KNN matting and nonlocal matting [11], show-

input hard segment by exp(−x)

soft segment by 1 − x soft segment by 1 − x

without spatial coordinates with spatial coordinates

Figure 6. The exp(−x) term tends to generate hard segmenta-

tion because the kernel decreases exponentially with respect to the

color difference. On the contrary, the 1 − x term without spatial

coordinates can produce soft segmentation closer to the ground

truth. Moreover, using the 1−x term with spatial coordinates, we

can generate an alpha matting with smoother transition between

neighboring pixels.

ing the efficacy of KNN searching in feature space in imple-

menting the nonlocal principle. Figure 4 visualizes a typical

A computed in KNN matting.

4.2. Feature vector X with spatial coordinates

KNN matting can be easily extended to handle SVBRDF

or high dimensional data with color space other than RGB.

For natural matting, a feature vector X(i) at a given pixel i
that includes spatial coordinates to reinforce spatial coher-

ence can be defined as

X(i) = (cos(h), sin(h), s, v, x, y)i (7)

where h, s, v are the respective HSV coordinates and (x, y)
are the spatial coordinates of pixel i. Few previous matting

approaches use the HSV color space. Feature vector can be

analogously defined for material matting where a pixel has

more than one observations: for material without exhibiting

spatial coherence (e.g. spray paint) the spatial coordinates

can be turned off.

Note the differences with nonlocal matting in enhancing

spatial coherence: spatial coordinates are incorporated as

part of our feature vector rather than considered separately

using dij in nonlocal matting (see (4)) with empirical setting

of h2 to control its influence. Further, image patch centered

at a pixel [11] is not used in our feature vector definition.

With KNN searching producing better nonlocal matching

than [11], the added information of larger patch does not

significantly help.

4.3. Kernel function k(i, j) for soft segmentation

We analyze common choices of kernel function k(x) to

justify ours which is 1 − x:

k(i, j) = 1 −
||X(i) − X(j)||

C
(8)

where C is the least upper bound of ||X(i)−X(j)|| to make

k(i, j) ∈ [0, 1]. Because (8) puts equal emphasis over the

range [0, 1] not biasing to either foreground or background,



the three overlapping layers can be faithfully extracted as

shown in Figure 6. There is no parameter to set (c.f. h1 in

(4)) and KNN allows returning the smallest ||X(i)−X(j)||.

A typical choice of kernels in machine learning,

exp(−x), was used in [11]. We argue it is not a good choice

for modeling optical blur and soft segmentation and in fact,

it favors hard segmentation: Figure 6 shows a synthetic ex-

ample where three layers are blended by fractional alphas;

the same KNN matting is run on this image except that the

kernel function is replaced by exp(−x). As shown in the

figure hard segments are obtained. The hard segmentation

results can be attributed to the non-maximal suppression

property of the Gaussian kernel, where non-foreground is

heavily penalized by the long tail of the Gaussian.

In nonlocal matting [11], the authors noted that the clus-

tering Laplacian causes inaccuracy around edges, while we

believe the major cause may be due to their use of the expo-

nential term in the kernel function. Barring factors such

as image outliers and color shifts due to Bayer patterns,

suppose F = (1, 0, 0) and B = (0, 0, 0). For a pixel’s

value E = (0.3, 0, 0), using (4) without the spatial term,

k(F, E) = exp(−‖F − E‖2/h2
1) = exp(−0.72/0.01) =

exp(−49) and k(B, E) = exp(−0.32/0.01) = exp(−9).
k(F, E) ≪ k(B, E) making k(F, E) negligible and bias-

ing the solution toward B, and thus hard segmentation is

resulted. Numerically, this also causes instability in com-

puting their clustering Laplacian, which is susceptible to

singularity because many terms are negligibly small.

4.4. Closed­form solution with fast implementation

While the clustering Laplacian Lc = (D−A)T (D−A)
is conducive to good graph clusters, the Laplacian L = D−
A is sparser while running much faster (up to 100 times

faster than Lc) without compromising the results except a

few more user inputs are required to achieve similar visual

results. This can be regarded as a tradeoff between running

time, amount of user input and result qualities. Without loss

of generality L is used in this section.

When user input in the form of trimaps or scribbles come
along, it can be shown that the closed-form solution for ex-
tracting n ≥ 2 layers:

(L + λD)
n

X

i

αi = λm (9)

where D = diag(m) and m is a binary vector of indices
of all the marked-up pixels, and λ is a constant controlling
user’s confidence on the markups. Our optimization func-
tion g(x) has a closed-form solution:

g(x) = xT Lx + λ
X

i∈m−v

x2

i + λ
X

i∈v

(xi − 1)2 (10)

where v is a binary vector of pixel indices corresponding

to user markups for a given layer. Then, g(x) is

xT Lx + λ
X

i∈m−v

x2

i + λ
X

i∈v

x2

i − 2λv
T x + λ|v|

= xT Lx + λ
X

i∈m

x2

i − 2λv
T x + λ|v|

=
1

2
xT 2(L + λD)x − 2λv

T x + λ|v|

=
1

2
xT Hx − cT x + λ|v|

where λ|v| is a constant. Note that H = 2(L+λD) is pos-

itive semi-definite because L is positive semi-definite and

D is diagonal matrix produced by the binary vector m. Dif-

ferentiating g(x) w.r.t. x and equating the result to zero:

∂g

∂x
= Hx − c = 0 (11)

Thus the optimal solution is

H−1c = (L + λD)−1(λv). (12)

This echos Lemma 1 in [11] that contributes a smaller and

more accurate solver than the one in [22], which gives the

optimal solution in closed form.

Rather than using the coarse-to-fine technique in the

solver in [13], since H is a large and sparse matrix which

is symmetric and semi-positive definite, we can leverage on

the PCG [2] running about 5 times faster than the conven-

tional conjugate method1, in order of a few seconds for solv-

ing input images available at the alpha matting evaluation

website. We also note that in [9] the traditional LU decom-

position method and conjugate gradient method were com-

pared. The iterative conjugate gradient method was used

because for their large kernels information propagation can

be faster.

4.5. Summation property

KNN matting in its general form for extracting n ≥ 2
layers satisfies the summation property, that is, the esti-

mated alphas at any given pixel sum up to 1. From (11)

(L + λD)α1 = λv1

...

(L + λD)αn = λvn

gives

(L + λD)

n∑

i=1

αi = λ

n∑

i=1

vi = λm (13)

Since

(L + λD)1 = λD1 = λm (14)

as the nullspace of Laplacian L is 1 a constant vector with

all 1’s. Since L + λD is invertible,
∑n

i=1 αi = 1.

1We use ichol provided in Matlab 2011b as the preconditioner.



In Theorem 2 of [18], the summation property was also

shown for multiple layer extraction for alpha matting RGB

images, where the same Laplacian from [13, 14] was still

used. In practice KNN matting’s output alphas are almost

within [0, 1]. However, the summation property does not

hold for sampling-based algorithms such as [8] when it

comes to multiple layer extraction: to obtain the alpha matte

of a layer, this layer is regarded as foreground while others

as background. Consider three layers L1 = (1, 0, 0), L2 =
(0, 1, 0), L3 = (0, 0, 1) and the pixel I = (1

3 , 1
3 , 1

3 ). To ob-

tain the alpha matte of L1, let L1 be foreground F and the

union of L2 and L3 be background B. According to Eqn

(2) in [8], α = (I−B)(F−B)
||F−B||2 , the alpha value for L1 is 0.5.

Similarly, the alpha value for L2 or L3 is also 0.5. Conse-

quently they sum up to 1.5. Normalization may help, but

the normalization factor will vary from pixel to pixel. Also,

the approach in [8] cannot be easily generalized to han-

dle multiple layers due to the potentially prohibitive joint

foreground-background space when multiple layers are in-

volved.

5. Experimental Results

We first show in this section the results on material mat-

ting on SVBRDF data from [10] (at the time of writing the

data in a very recent state of the art [12] is not available

yet). Then, we will show results on natural image matting

using the examples in [1], calling attention to state of the

arts such as closed-form (CF) matting [13], nonlocal mat-

ting [11], fast and global matting [9, 8], and learning-based

(LB) matting [22]. All of our results, including the natural

image matting results and their comparisons with state-of-

the-art techniques are included in the supplemental materi-

als. Due to space limit here we highlight a few results.

5.1. Material matting

The clustering Laplacian was used in our material mat-

ting experiments, where a few user-supplied clicks are all

KNN matting needed to produce satisfactory results shown

in Figures 2 and 7. On average only one click per layer

is needed. Please refer to the electronic version for best

viewing of our material matting results: in sg, five overlap-

ping material mattes are produced; despite that the matte

for ‘blue paper’ has several disconnected components one

click is all it takes for matting the material. KNN matting

produces good mattes for dove where the moon and the sky

mattes are soft segments, and also for wp1 where hard seg-

ments should be produced. In wt the transparent slide (in-

visible here) was correctly matted out. In wp2 (see supple-

mental material) the silver foil is brushed in three general

directions, which produces different BRDF responses dis-

tinguishable in the feature space for KNN matting to output

the visually correct result. In a more challenging dataset

Laplacian n max

wt 400 × 380 × 162 4.9 4 232.7

sg 500 × 523 × 147 4.5 5 272.1

wp1 375 × 480 × 153 5.52 2 153.4

wp2 310 × 390 × 153 3.1 4 65.7

dove 510 × 470 × 141 7.0 3 127.9

mask 320 × 232 × 93 1.34 5 52

Table 1. Running times in secs for material matting on a machine

with 3.4 GHz CPU. n is number of layers; each can be computed

in parallel after the Laplacian is computed. Running times shown

here are the time for computing the Laplacian and the maximum

time for computing an alpha layer in each example. Refer to sup-

plemental material for other details.

dove dove moon sky wp1 foreground background

wt red silver transparent wood

mask gold blue lips eyes gem

Figure 7. KNN matting on material matting. In most cases only

one click per layer is needed. In mask, clicks with the same color

belong to one layer. Figure best viewed in electronic version; see

all of the material matting result images in supplemental material.

mask, subtle materials such as the lips and the gem were

matted out. This mask example is arguably more challeng-

ing than the above for the following reasons: we use a bud-

get capture equipment (c.f. precision equipment in [10]);

the object geometry is so complex that produces a lot of cast

shadows (c.f. relative flat geometry in [10]); the mixing of

the blue and gold paints introduce a lot of color ambigui-

ties. As shown in the figure more input clicks are required

to produce good results. Here, spatial coordinates were not

included in defining a feature vector (7) where SVBRDF

does not usually exhibit strong spatial coherence. Table 1

tabulates the running times of all of the SVBRDF exam-

ples used in this paper. Thanks to FLANN computing the

Laplacian takes only a few seconds for matching nonlocal

neighborhoods even they are far away in the spatial domain.

After computing Laplacians, individual layer extraction can

be executed in parallel so we record the maximum extrac-

tion time among all layers for each example. More details

are available in the supplemental material.

5.2. Natural image matting

The Laplacian L = D − A was used in KNN matting

in this section to obtain a sparser system for efficiency in



overall avg pine- plastic normalized

user apple bag score(%)

Shared 3.6 3.5 2 7 79.6

Segmentation 4.2 4 5 9 77.2

KNN 4.3 3.6 1 1 84.6

Improved color 4.4 4 4 3 75.7

Learning-based 5.9 6.4 12 2 67.8

Closed-Form 6 7.4 10 5 66.1

Shared (real time) 6.1 5.8 3 8 65.4

Large Kernel 6.8 6.5 6 4 62.4

Robust 7.5 8.1 8 6 55.9

High-res 8.5 8.1 9 13 51.5

Table 2. Overall, average and individual user-trimap MSE ranks

as well as average normalized scores (defined in text) on the alpha

matting evaluation website [1]. Running time of our codes can

be tenfold faster by employing GPU implementattion of KNN and

PCG. Complete ranking and detailed information on GPU accel-

eration are in supplemental material.

our natural image matting experiments. Table 2 tabulates

the partial ranking among the methods evaluated in [1],

showing that KNN matting is competitive overall on the

same dense trimaps without sophisticated sampling strate-

gies. Figure 8 shows the qualitative comparison of selected

examples on fuzzy objects and objects with holes (with

complete results and comparison with CF and LB matting

in [1] available in the supplemental material), noting the

pineapple used in [9] as a failure case on local color-line as-

sumption [13] whereas KNN matting performed better than

shared matting on this example (Table 2) without sophisti-

cated sampling strategies.

KNN matting gives top performance on difficult images

(plastic bag and pineapple, Figure 8) while [1] does not

rank us high on arguably easier ones (donkey and elephant,

see supplemental material), although we obtain good alpha

mattes quantitatively the same as other top-ranked methods

on such easier examples. For this reason, we define the nor-

malized score of a method given a trimap as the ratio of the

best MSE for that trimap to its MSE. We argue that nor-

malized scores are fairer than average ranks: for the donkey

user-trimap, the top 10 methods have the sameMSE 0.3, but

shared matting ranks first while robust matting ranks 10th.

More alternative ranking information can also be found in

the supplemental material. In summary, regardless of rank-

ing methods, given the trimaps from [1], our results are

better than closed-form matting [13], fast and global mat-

ting [9, 8], and visually similar to the high-quality results of

shared matting [6].

At times a lay user may not be able provide detailed

trimaps akin to those in [1]; a few clicks or thin strokes are

expected. Figure 1 shows our visually-better results com-

pared with nonlocal matting [11] based on the same input

clicks used in their paper. Figure 9 compares the results on

very sparse input, showing that KNN matting preserves bet-

ter the fuzzy boundaries as well as the solid portions of the

foreground than state-of-the-arts. Figure 10 shows the MSE
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Figure 10. For very sparse input in Figure 9, KNN matting is better

than other state-of-the-art matting approaches.

comparison of our method with closed-form matting, spec-

tral matting, learning-based matting on six examples with

ground-truth, where the input consists of only a few strokes.

6. Conclusion

Rather than adopting the color-line model assumption

in a local window or relying on sophisticated sampling

strategies on foreground and background pixels, we pro-

pose KNN matting which employs the nonlocal principle

for natural image matting and material matting, taking a

significant step to produce a fast system that outputs bet-

ter results and is easier to implement (our implementation

has only about 50 lines of Matlab codes). It generalizes

well to extracting n ≥ 2 multiple layers in non-RGB color

space in any dimensions where kernel size is also not an is-

sue. Our general alpha matting approach allows the simul-

taneous extraction of multiple overlapping layers based on

sparse input trimaps and outputs alphas satisfying the sum-

mation constraint. Extensive experiments and comparisons

using standard datasets show that our method is competitive

among the state-of-the-arts. Meanwhile, because KNN mat-

ting constructs clustering Laplacian based on feature vector,

the choice of elements in feature vector is very important.

As shown in Figure 5, KNN matting is better on HSV color

space rather than RGB color space. Thus inappropriate fea-

ture vector can lead to undesirable results. Future work

includes investigating the relationship between the nonlo-

cal principle and the color-line model applied nonlocally in

general alpha matting of multiple layers from images.
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