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Abstract

We are interested in a general alpha matting approach
for the simultaneous extraction of multiple image layers;
each layer may have disjoint segments for material matting
not limited to foreground mattes typical of natural image
matting. The estimated alphas also satisfy the summation
constraint. Our approach does not assume the local color-
line model, does not need sophisticated sampling strategies,
and generalizes well to any color or feature space in any
dimensions. Our matting technique, aptly calledKNN mat-
ting, capitalizes on the nonlocal principle by usingK near-
est neighbors (KNN) in matching nonlocal neighborhoods,
and contributes a simple and fast algorithm giving compet-
itive results with sparse user markups. KNN matting has
a closed-form solution that can leverage on the precondi-
tioned conjugate gradient method to produce an ef�cient
implementation. Experimental evaluation on benchmark
datasets indicates that our matting results are comparable
to or of higher quality than state of the art methods.

1. Introduction

Alpha matting refers to the problem of decomposing an
image into two layers, called foreground and background,
which is a convex combination under the image composit-
ing equation:

I = �F + (1 � � )B (1)

whereI is the given pixel color,F is the unknown fore-
ground layer,B is the unknown background layer, and� is
the unknown alpha matte. This compositing equation takes
a general form when there aren � 2 layers:

I =
nX

i =1

� i Fi ;
P n

i =1 � i = 1 . (2)

We are interested in solving the general alpha matting prob-
lem for extracting multiple image layers simultaneously
with sparse user markups, where such markups may fail
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Figure 1. Using the sparse click inputs same as in nonlocal mat-
ting [11], KNN matting produces better results. Top row: clearer
and cleaner boundary; middle: more details preserved for hairs as
well as the red fuzzy object; bottom: furs are more clearly sepa-
rated from background. Figure best viewed in electronic version.

approaches requiring reliable color samples to work. Re-
fer to Figures1 and 2. While the output can be fore-
ground/background layers exhibiting various degrees of
spatial coherence as in natural image matting on single RGB
images, the extracted layers with fractional alpha bound-
aries can also be disjoint, as those obtained in material mat-
ting from multi-channel images that capture spatially vary-
ing bidirectional distribution function (SVBRDF).

Inspired by nonlocal matting [11], and sharing the math-
ematical properties of nonlocal denoising [3], our approach
capitalizes onK nearest neighbors (KNN) searching in the
feature space for matching, and uses an improved match-
ing metric to achieve good results with a simpler algo-
rithm than [11]. We do not assume thelocal 4D color-line
model [13, 14] widely adopted by subsequent matting ap-
proaches, thus our approach generalizes well in any color
space (e.g., HSV) in any dimensions (e.g., six-dimensional
SVBRDF). It does not require a large kernel to collect good
samples [9, 11] in de�ning the Laplacian, nor does it require
good foreground and background sample pairs [20, 8, 6]
(which need user markups more than a few clicks, much less
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Figure 2. KNN matting on material matting using thesgdataset. Original images at top; bottom shows sparse user input (5 clicks; one per
layer) and the �ve layers automatically extracted. Our result distinguishes the two different gold foil layers despitetheir subtle difference
in materials (where they were combined in [10]). Figure best viewed in electronic version.

that foreground and background are unknown themselves),
and yet our approach is not at odds with these sampling
approaches when regarded as postprocessing for alpha re-
�nement akin to [8]. Our matting technique, calledKNN
mattingstill enjoys a closed-form solution that can harness
the preconditioned conjugate gradient method (PCG) [2],
and runs in order of a few seconds for high-resolution im-
ages in natural image matting after accepting very sparse
user markups: our unoptimized Matlab solver runs in 30–42
seconds on an old laptop with AMD Turion X2 Ultra Dual-
core Mobile ZM-80 2.1 GHz and 3G memory for images of
sizes800 � 600 available at the alpha matting evaluation
website [1]. Experimental evaluation on this benchmark
datasets indicates that our matting approach is competitive
in terms of speed and quality of results.

2. Related Work

Natural Image Matting For a thorough survey on mat-
ting see [21]; here we cite the works that are closely related
to ours. The matting problem is severely underconstrained
with more unknowns than equations to solve, so user in-
teraction is needed to resolve ambiguities and constrain
the solution. Spatial proximity taking the form of user-
supplied trimaps or strokes was employed in [4, 19], which
causes signi�cant errors when the labels are distant, and be-
comes impractical for matting materials with SVBRDF [12]
(e.g. inhomogeneous coating by spray painting). For im-
ages with piecewise smooth regions, spatial connectivity
in small image windows was used in de�ning the matting
Laplacian [13] for foreground extraction and later in [14]
for multiple layer extraction; good results are guaranteed
when the linear 4D color-line model within a local window
holds. Else, user needs to carefully mark up relevant colors
in textured regions which are often nonlocal to one another.
The closed-form solution for multiple layer extraction was
analyzed in [18] where the summation and positivity con-
straints were investigated. The Laplacian construction and
line model assumption from [13, 14] were still adopted.

The nonlocal principle has received a lot of attention for
its excellent results in image and movie denoising [3]. Two

recent CVPR contributions on natural image matting [11, 8]
have tapped into sampling nonlocal neighborhoods. Re-
duced user input can be achieved by accurateclustering
of foreground and background, where ideally the user only
need to constrain asinglepixel in each cluster for comput-
ing the optimal mattes. Thus, we prefer good clustering
to good sampling of reliable foreground-background pairs
for the following reasons: sampling techniques will fail in
very sparse inputs that can otherwise generate good results
in KNN matting; they do not generalize well ton > 2 layers
due to the potentially prohibitive joint search space when
denser input is used; adopting various modeling or sampling
strategies usually leads to more complicated implementa-
tion (e.g. use of randomized patchmatch in [8], ray shooting
in [6], PSF estimation in [17]), resulting in more parameter
setting or requiring more careful markups/trimaps. In con-
trast, KNN matting requires only one non-critical parameter
K .

The other recent CVPR contribution consists of corre-
spondence search based on a cost function derived from
the compositing equation [8]. Noting that relevant color
sampling improves performance [20, 6], this approach sam-
ples and matches in a randomized manner relevant nonlocal
neighbors in a joint foreground-background space which,
as mentioned, can become prohibitively large if it is gen-
eralized to handle multiple layers. Earlier, a fast matting
method (up to 20� compared with [13]) was proposed in [9]
that uses large kernels for achieving high quality results.
Since the same local color-line model and the same Lapla-
cian construction in [13, 14] were adopted, unsatisfactory
results are unavoidable where large windows were used and
the model assumption fails. So a separate KD-tree segmen-
tation step was used to make the kernel size adaptive to the
trimap.

Material Matting Much work has been done on BRDF
decomposition aiming at reducing the dimensionality of a
SVBRDF which is six-dimensional in its general form. De-
compositions returned by principal component analysis and
independent component analysis and its extensions do not
in general correspond to different materials and thus are not
conducive to high-level editing. Factorization approaches
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Figure 3. KNN and nonlocal af�nities comparison given the same
pixel (marked red). Nonlocal matting uses a spatial window cen-
tered at the given pixel for sampling nonlocal neighborhoods (ra-
dius= 9 in [11]). KNN matting collects more matching neighbor-
hood globally rather than within an image window, while spending
signi�cantly less computation time (K = 81 here).

such as homomorphic factorization [15] and matrix factor-
ization [5] decompose a BRDF into smaller parts, but such
decompositions also do not promise that individual seg-
ments correspond to single materials. Soft segmentation is
required when different materials blend together. Blending
weights are available in [10] where a SVBRDF was decom-
posed into specular and diffuse basis components which are
homogeneous as previously done in [7]. In [12], a SVBRDF
was separated into simpler components with opacity maps.
The probabilistic formulation takes into consideration local
and texture variations in their two-layer separation, and was
applied successively rather than simultaneously to extract
multiple material layers so accumulation errors can be re-
sulted.

3. Nonlocal Principle for Alpha Matting

Akin to nonlocal matting [11] our KNN matting capital-
izes on the nonlocal principle [3] in constructing af�nities
so that good graph clusters are obtained for respective lay-
ers. Consequently sparse input is suf�cient. It was also
noted in [11] that the matting Laplacian proposed in [13] in
many cases is not conducive to good clustering especially
when the local color-line model assumption fails, which is
manifested into small and localized clusters. These clusters
are combined into larger ones through a nonlinear optimiza-
tion scheme in [14] biased toward binary-valued alphas.

The working assumption of the nonlocal principle [3] is
that a denoised pixeli is a weighted sum of the pixels with
similar appearance with the weights given by a kernel func-
tion k(i; j ). Recall in [11] the followings:

E [X (i )] �
X

j

X (j )k(i; j )
1

D i
; (3)

k(i; j ) = exp( �
1
h2

1
kX (i ) � X (j )k2

g �
1
h2

2
d2

ij ) (4)

D i =
X

j

k(i; j ): (5)

whereX (i ) is a feature vector computed using the informa-
tion at/around pixeli , anddij is the pixel distance between
pixelsi andj , k�kg is a norm weighted by a center-weighted
Gaussian,h1 andh2 are some constants found empirically.

Figure 4. Typical nonlocal af�nities matrixA in KNN matting
(left, with K = 10) which is not as strongly diagonal as its coun-
terpart from nonlocal matting (right, with radius= 3 ). The KNN
matrix is still sparse.

By analogy of (3), the expected value of alpha matte:

E [� i ] �
X

j

� j k(i; j )
1

D i
or D i � i � k(i; �)T � (6)

where� is the vector of all� values over the input image.
As described in [11]

� the nonlocal principle applies to� as in (6);

� the conditional distribution� givenX is E [� i jX (i ) =
X (j )] = � j , that is, pixels having the same appearance
are expected to share the same alpha value.

Thenonlocalprinciple of alpha matting basically replaces
thelocal color-line assumption of [13, 14] applied in a local
window which, although widely adopted, can be easily vio-
lated in practice when large kernels are used (such as [9]).

Following the derivationD� � A � , where A =
[k(i; j )] is an N � N af�nity matrix and D = diag(D i )
is anN � N diagonal matrix, whereN is the total number
of pixels. Thus,(D � A )� � 0 or � T L c� � 0 where
L c = ( D � A )T (D � A ) is called the clustering Laplacian.
This basically solves the quadratic minimization problem
min �

P
A ij (� i � � j )2.

In nonlocal matting the extraction Laplacian (whose
derivation is more involved) rather than the above simpler
clustering Laplacian was used in tandem with user-supplied
input for alpha matting. While it was shown for cluster-
ing Laplacian in [11] sparse input suf�ces for good results,
the estimated alphas along edges are not accurate due to
the use of spatial patches in computing af�nitiesA . More-
over, the implementation in [11] requires a suf�ciently large
kernel for collecting and matching nonlocal neighborhoods,
so specialized implementation considerations are needed to
make it practical (c.f. a nice proof in fast matting [9]). The
choice of empirical parametersh1 andh2 also affect results
quality.

4. KNN Matting

In the following we describe and analyze our technical
contributions of KNN matting which does not rely on the
local color-line model, does not apply regularization, and
does not have the issue of kernel size. They look straightfor-
ward at �rst glance (with the corresponding implementation
de�nitely straightforward); our analysis and experimental
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Figure 5. KNN matting can operate in any color space simply by
changing the de�nition of feature vector in (7). Here shows the
signi�cant improvement in the result oftroll using the HSV space
on a coarse trimap. Our result is ranked top at the time of writing
(followed by shared matting [6] also shown here). The hairs and
the bridge are dark with close color values in the RGB space: a
hair pixel has RGB(20; 31; 33) and a bridge pixel(40; 30; 33) in
255 scale, whereas hue of the hair is126� and that of bridge is
15� .

results on the other hand show that our approach provides a
simple, fast and better solution than nonlocal matting [11]
with generalization to multiple layers extraction. Our un-
optimized Matlab implementation runs in a few seconds on
800� 600 examples available at the alpha matting evalu-
ation website [1] and our results were ranked high in [1]
among the state of the arts in natural image matting. In most
cases only one click is needed for extracting each material
layer from SVBRDF data [10] in material matting.

4.1. ComputingA using KNN

ComputingA in KNN matting involves collecting nonlo-
cal neighborhoodsj of a pixeli before their feature vectors
X (�)s are matched usingk(i; j ).

Rather than using a large kernel as in fast matting and
nonlocal matting operating in the spatial image domain,
given a pixeli , we implement the nonlocal principle by
computingK nearest neighbors (KNN) in the feature space.
Our implementation was made easy by using FLANN [16],
which proves to be very ef�cient in practice, running in or-
der of a few seconds for an800� 600image in natural im-
age matting. We notice in nonlocal matting [11] special im-
plementation considerations and restrictions were neededto
cope with computation load with large kernels. Since kernel
size is not an issue in this paper due to ef�cient KNN search,
the running time for computing one row ofA is O(Kq)
whereO(q) is the per-query time in FLANN. Typical val-
ues ofK range from only 3 (for material matting) to 15 (for
natural image matting). They are not critical parameters and
kept constant in our experiments.

Figure 3 compares the nonlocal neighborhoods com-
puted using KNN matting and nonlocal matting [11], show-

input hard segment byexp(� x)

soft segment by1 � x soft segment by1 � x
without spatial coordinates with spatial coordinates

Figure 6. Theexp(� x) term tends to generate hard segmenta-
tion because the kernel decreases exponentially with respect to the
color difference. On the contrary, the1 � x term without spatial
coordinates can produce soft segmentation closer to the ground
truth. Moreover, using the1 � x term with spatial coordinates, we
can generate an alpha matting with smoother transition between
neighboring pixels.

ing the ef�cacy of KNN searching in feature space in imple-
menting the nonlocal principle. Figure4 visualizes a typical
A computed in KNN matting.

4.2. Feature vectorX with spatial coordinates

KNN matting can be easily extended to handle SVBRDF
or high dimensional data with color space other than RGB.
For natural matting, a feature vectorX (i ) at a given pixeli
that includes spatial coordinates to reinforce spatial coher-
ence can be de�ned as

X (i ) = (cos( h); sin(h); s; v; x; y) i (7)

whereh; s; v are the respective HSV coordinates and(x; y)
are the spatial coordinates of pixeli . Few previous matting
approaches use the HSV color space. Feature vector can be
analogously de�ned for material matting where a pixel has
more than one observations: for material without exhibiting
spatial coherence (e.g. spray paint) the spatial coordinates
can be turned off.

Note the differences with nonlocal matting in enhancing
spatial coherence: spatial coordinates are incorporated as
part of our feature vector rather than considered separately
usingdij in nonlocal matting (see (4)) with empirical setting
of h2 to control its in�uence. Further, image patch centered
at a pixel [11] is not used in our feature vector de�nition.
With KNN searching producing better nonlocal matching
than [11], the added information of larger patch does not
signi�cantly help.

4.3. Kernel function k(i; j ) for soft segmentation

We analyze common choices of kernel functionk(x) to
justify ours which is1 � x:

k(i; j ) = 1 �
jjX (i ) � X (j )jj

C
(8)

whereC is the least upper bound ofjjX (i ) � X (j )jj to make
k(i; j ) 2 [0; 1]. Because (8) puts equal emphasis over the
range[0; 1] not biasing to either foreground or background,



the three overlapping layers can be faithfully extracted as
shown in Figure6. There is no parameter to set (c.f.h1 in
(4)) and KNN allows returning the smallestjjX (i ) � X (j )jj .

A typical choice of kernels in machine learning,
exp(� x), was used in [11]. We argue it is not a good choice
for modeling optical blur and soft segmentation and in fact,
it favors hard segmentation: Figure6 shows a synthetic ex-
ample where three layers are blended by fractional alphas;
the same KNN matting is run on this image except that the
kernel function is replaced byexp(� x). As shown in the
�gure hard segments are obtained. The hard segmentation
results can be attributed to the non-maximal suppression
property of the Gaussian kernel, where non-foreground is
heavily penalized by the long tail of the Gaussian.

In nonlocal matting [11], the authors noted that the clus-
tering Laplacian causes inaccuracy around edges, while we
believe the major cause may be due to their use of the expo-
nential term in the kernel function. Barring factors such
as image outliers and color shifts due to Bayer patterns,
supposeF = (1 ; 0; 0) and B = (0 ; 0; 0). For a pixel's
valueE = (0 :3; 0; 0), using (4) without the spatial term,
k(F; E ) = exp( �k F � Ek2=h2

1) = exp( � 0:72=0:01) =
exp(� 49) andk(B; E ) = exp( � 0:32=0:01) = exp( � 9).
k(F; E ) � k(B; E ) makingk(F; E ) negligible and bias-
ing the solution towardB , and thus hard segmentation is
resulted. Numerically, this also causes instability in com-
puting their clustering Laplacian, which is susceptible to
singularity because many terms are negligibly small.

4.4. Closedform solution with fast implementation

While the clustering LaplacianL c = ( D � A )T (D � A )
is conducive to good graph clusters, the LaplacianL = D�
A is sparser while running much faster (up to 100 times
faster thanL c) without compromising the results except a
few more user inputs are required to achieve similar visual
results. This can be regarded as a tradeoff between running
time, amount of user input and result qualities. Without loss
of generalityL is used in this section.

When user input in the form of trimaps or scribbles come
along, it can be shown that the closed-form solution for ex-
tractingn � 2 layers:

(L + �D )
nX

i

� i = � m (9)

whereD = diag(m) andm is a binary vector of indices
of all the marked-up pixels, and� is a constant controlling
user's con�dence on the markups. Our optimization func-
tion g(x) has a closed-form solution:

g(x) = xT Lx + �
X

i 2 m � v

x2
i + �

X

i 2 v

(x i � 1)2 (10)

wherev is a binary vector of pixel indices corresponding

to user markups for a given layer. Then,g(x) is

xT Lx + �
X

i 2 m � v

x2
i + �

X

i 2 v

x2
i � 2� v T x + � jv j

= xT Lx + �
X

i 2 m

x2
i � 2� v T x + � jv j

=
1

2
xT 2(L + �D )x � 2� v T x + � jv j

=
1

2
xT Hx � cT x + � jv j

where� jv j is a constant. Note thatH = 2( L + �D ) is pos-
itive semi-de�nite becauseL is positive semi-de�nite and
D is diagonal matrix produced by the binary vectorm. Dif-
ferentiatingg(x) w.r.t. x and equating the result to zero:

@g
@x

= Hx � c = 0 (11)

Thus the optimal solution is

H � 1c = ( L + �D )� 1(� v ): (12)

This echos Lemma 1 in [11] that contributes a smaller and
more accurate solver than the one in [22], which gives the
optimal solution in closed form.

Rather than using the coarse-to-�ne technique in the
solver in [13], sinceH is a large and sparse matrix which
is symmetric and semi-positive de�nite, we can leverage on
the PCG [2] running about 5 times faster than the conven-
tional conjugate method1, in order of a few seconds for solv-
ing input images available at the alpha matting evaluation
website. We also note that in [9] the traditional LU decom-
position method and conjugate gradient method were com-
pared. The iterative conjugate gradient method was used
because for their large kernels information propagation can
be faster.

4.5. Summation property

KNN matting in its general form for extractingn � 2
layers satis�es the summation property, that is, the esti-
mated alphas at any given pixel sum up to 1. From (11)

(L + �D )� 1 = � v1
...

(L + �D )� n = � vn

gives

(L + �D )
nX

i =1

� i = �
nX

i =1

v i = � m (13)

Since
(L + �D )1 = �D 1 = � m (14)

as the nullspace of LaplacianL is 1 a constant vector with
all 1's. SinceL + �D is invertible,

P n
i =1 � i = 1.

1We useichol provided in Matlab 2011b as the preconditioner.



In Theorem2 of [18], the summation property was also
shown for multiple layer extraction for alpha matting RGB
images, where the same Laplacian from [13, 14] was still
used. In practice KNN matting's output alphas are almost
within [0; 1]. However, the summation property does not
hold for sampling-based algorithms such as [8] when it
comes to multiple layer extraction: to obtain the alpha matte
of a layer, this layer is regarded as foreground while others
as background. Consider three layersL 1 = (1 ; 0; 0); L 2 =
(0; 1; 0); L 3 = (0 ; 0; 1) and the pixelI = ( 1

3 ; 1
3 ; 1

3 ). To ob-
tain the alpha matte ofL 1, let L 1 be foregroundF and the
union of L 2 andL 3 be backgroundB . According to Eqn
(2) in [8], � = ( I � B )( F � B )

jj F � B jj 2 , the alpha value forL 1 is 0.5.
Similarly, the alpha value forL 2 or L 3 is also 0.5. Conse-
quently they sum up to 1.5. Normalization may help, but
the normalization factor will vary from pixel to pixel. Also,
the approach in [8] cannot be easily generalized to han-
dle multiple layers due to the potentially prohibitive joint
foreground-background space when multiple layers are in-
volved.

5. Experimental Results

We �rst show in this section the results on material mat-
ting on SVBRDF data from [10] (at the time of writing the
data in a very recent state of the art [12] is not available
yet). Then, we will show results on natural image matting
using the examples in [1], calling attention to state of the
arts such as closed-form (CF) matting [13], nonlocal mat-
ting [11], fast and global matting [9, 8], and learning-based
(LB) matting [22]. All of our results, including the natural
image matting results and their comparisons with state-of-
the-art techniques are included in the supplemental materi-
als. Due to space limit here we highlight a few results.

5.1. Material matting

The clustering Laplacian was used in our material mat-
ting experiments, where a few user-supplied clicks are all
KNN matting needed to produce satisfactory results shown
in Figures2 and 7. On average only one click per layer
is needed. Please refer to the electronic version for best
viewing of our material matting results: insg, �ve overlap-
ping material mattes are produced; despite that the matte
for `blue paper' has several disconnected components one
click is all it takes for matting the material. KNN matting
produces good mattes fordovewhere the moon and the sky
mattes are soft segments, and also forwp1where hard seg-
ments should be produced. Inwt the transparent slide (in-
visible here) was correctly matted out. Inwp2(see supple-
mental material) the silver foil is brushed in three general
directions, which produces different BRDF responses dis-
tinguishable in the feature space for KNN matting to output
the visually correct result. In a more challenging dataset

Laplacian n max
wt 400 � 380 � 162 4.9 4 232.7
sg 500 � 523 � 147 4.5 5 272.1
wp1 375 � 480 � 153 5.52 2 153.4
wp2 310 � 390 � 153 3.1 4 65.7
dove 510 � 470 � 141 7.0 3 127.9
mask 320 � 232 � 93 1.34 5 52

Table 1. Running times in secs for material matting on a machine
with 3.4 GHz CPU.n is number of layers; each can be computed
in parallel after the Laplacian is computed. Running times shown
here are the time for computing the Laplacian and the maximum
time for computing an alpha layer in each example. Refer to sup-
plemental material for other details.

dove dove moon sky wp1 foreground background

wt red silver transparent wood

mask gold blue lips eyes gem

Figure 7. KNN matting on material matting. In most cases only
one click per layer is needed. Inmask, clicks with the same color
belong to one layer. Figure best viewed in electronic version; see
all of the material matting result images in supplemental material.

mask, subtle materials such as the lips and the gem were
matted out. This mask example is arguably more challeng-
ing than the above for the following reasons: we use a bud-
get capture equipment (c.f. precision equipment in [10]);
the object geometry is so complex that produces a lot of cast
shadows (c.f. relative �at geometry in [10]); the mixing of
the blue and gold paints introduce a lot of color ambigui-
ties. As shown in the �gure more input clicks are required
to produce good results. Here, spatial coordinates were not
included in de�ning a feature vector (7) where SVBRDF
does not usually exhibit strong spatial coherence. Table1
tabulates the running times of all of the SVBRDF exam-
ples used in this paper. Thanks to FLANN computing the
Laplacian takes only a few seconds for matching nonlocal
neighborhoods even they are far away in the spatial domain.
After computing Laplacians, individual layer extraction can
be executed in parallel so we record the maximum extrac-
tion time among all layers for each example. More details
are available in the supplemental material.

5.2. Natural image matting

The LaplacianL = D � A was used in KNN matting
in this section to obtain a sparser system for ef�ciency in



overall avg pine- plastic normalized
user apple bag score(%)

Shared 3.6 3.5 2 7 79.6
Segmentation 4.2 4 5 9 77.2
KNN 4.3 3.6 1 1 84.6
Improved color 4.4 4 4 3 75.7
Learning-based 5.9 6.4 12 2 67.8
Closed-Form 6 7.4 10 5 66.1
Shared (real time) 6.1 5.8 3 8 65.4
Large Kernel 6.8 6.5 6 4 62.4
Robust 7.5 8.1 8 6 55.9
High-res 8.5 8.1 9 13 51.5

Table 2. Overall, average and individual user-trimap MSE ranks
as well as averagenormalized scores(de�ned in text) on the alpha
matting evaluation website [1]. Running time of our codes can
be tenfold faster by employing GPU implementattion of KNN and
PCG. Complete ranking and detailed information on GPU accel-
eration are in supplemental material.

our natural image matting experiments. Table2 tabulates
the partial ranking among the methods evaluated in [1],
showing that KNN matting is competitive overall on the
same dense trimaps without sophisticated sampling strate-
gies. Figure8 shows the qualitative comparison of selected
examples on fuzzy objects and objects with holes (with
complete results and comparison with CF and LB matting
in [1] available in the supplemental material), noting the
pineappleused in [9] as a failure case on local color-line as-
sumption [13] whereas KNN matting performed better than
shared matting on this example (Table2) without sophisti-
cated sampling strategies.

KNN matting gives top performance on dif�cult images
(plastic bagand pineapple, Figure 8) while [1] does not
rank us high on arguably easier ones (donkeyandelephant,
see supplemental material), although we obtain good alpha
mattes quantitatively the same as other top-ranked methods
on such easier examples. For this reason, we de�ne thenor-
malized scoreof a method given a trimap as the ratio of the
best MSE for that trimap to its MSE. We argue that nor-
malized scores are fairer than average ranks: for thedonkey
user-trimap, the top 10 methods have thesameMSE 0.3, but
shared matting ranks �rst while robust matting ranks 10th.
More alternative ranking information can also be found in
the supplemental material. In summary, regardless of rank-
ing methods, given the trimaps from [1], our results are
better than closed-form matting [13], fast and global mat-
ting [9, 8], and visually similar to the high-quality results of
shared matting [6].

At times a lay user may not be able provide detailed
trimaps akin to those in [1]; a few clicks or thin strokes are
expected. Figure1 shows our visually-better results com-
pared with nonlocal matting [11] based on the same input
clicks used in their paper. Figure9 compares the results on
very sparse input, showing that KNN matting preserves bet-
ter the fuzzy boundaries as well as the solid portions of the
foreground than state-of-the-arts. Figure10shows the MSE
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Figure 10. For very sparse input in Figure9, KNN matting is better
than other state-of-the-art matting approaches.

comparison of our method with closed-form matting, spec-
tral matting, learning-based matting on six examples with
ground-truth, where the input consists of only a few strokes.

6. Conclusion

Rather than adopting the color-line model assumption
in a local window or relying on sophisticated sampling
strategies on foreground and background pixels, we pro-
pose KNN matting which employs the nonlocal principle
for natural image matting and material matting, taking a
signi�cant step to produce a fast system that outputs bet-
ter results and is easier to implement (our implementation
has only about 50 lines of Matlab codes). It generalizes
well to extractingn � 2 multiple layers in non-RGB color
space in any dimensions where kernel size is also not an is-
sue. Our general alpha matting approach allows the simul-
taneous extraction of multiple overlapping layers based on
sparse input trimaps and outputs alphas satisfying the sum-
mation constraint. Extensive experiments and comparisons
using standard datasets show that our method is competitive
among the state-of-the-arts. Meanwhile, because KNN mat-
ting constructs clustering Laplacian based on feature vector,
the choice of elements in feature vector is very important.
As shown in Figure5, KNN matting is better on HSV color
space rather than RGB color space. Thus inappropriate fea-
ture vector can lead to undesirable results. Future work
includes investigating the relationship between the nonlo-
cal principle and the color-line model appliednonlocallyin
general alpha matting of multiple layers from images.
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